OXIDATIVE TRANSFORMATION OF TRYPTOPHAN TO 5-HYDROXY-N-FORMYLKYNURENINE

Masako Nakagawa,^{*}Yukio Yokoyama, Shiro Kato, and Tohru Hino

Faculty of Pharmaceutical Sciences, Chiba University, 1–33 Yayoi-cho, Chiba-shi, 260, Japan

<u>Abstract</u> — Dye-sensitized photooxygenation of L-tryptophan in an alkaline phosphate buffer followed by NaBH₄ reduction afforded 3a,5-dihydroxypyrroloindole <u>5</u> which readily underwent air oxidation to give 5-hydroxy-N-formylkynurenine <u>6a</u>.

We had earlier shown¹ that the dye-sensitized photooxygenation of tryptophan gave the hydroperoxide 2a as the main product in the wide range of pH (2.7-8.9) and N-formylkynurenine was formed as the major product in sodium carbonate-acetic acid solution.

We have now isolated and characterized a new reaction product, 5-hydroxy-N-formylkynurenine oa by further examination of dye-sensitized photooxygenation of L-tryptophan in alkaline phosphate buffers. L-tryptophan]. (500 mg) was irradiated² for 1.5 h at 0-5°C in the presence of methylene blue (MB) (1/50-1/100 mol equiv) under a stream of O₂ in phosphate buffer (300 ml, pH 7.7)³. The reaction mixture was then treated with Me₂S and left overnight followed by ion exchange column chromatography. Lyophilization of the elution with water provided 5-hydroxy-N-formylkynurenine $\delta a_{1}(\alpha)_{D}^{11}$ -41.3° (c = 1, H₂O), $\lambda m \alpha x$ (H₂O) 234, 261sh, 347 nm in 24% yield, together with 2b in 16% yield and a small amount of N-formylkynurenine. The structure of 6a was further confirmed by its conversion into the acylated derivative δb^4 , mp 141.5-142.5°C, $(\alpha)_D^{19}$ +15° (c = 0.25, EtOH). The UV spectrum of the reaction mixture showed a maximum at 269 nm (in H₂O) reminiscent of a typical quinoneimine chromophore 5 , suggesting that the quinoneimine $\frac{4}{2}$ would be an intermediate. Accordingly, when the reaction mixture was reduced with NaBH4 under N2 followed by immediate neutralization with dil HCl and work-up, 3a,5-dihydroxypyrroloindole 5 was obtained in 95% yield as a mixture of cis and trans isomers ¹c, almost colorless powder, mp 199–201°C (dec.); λmax (H₂O) 238, 312 nm; λmax (H₂O–OH⁻) 243, 326 nm and óa was not isolated. However, in contrast to 2b, 5 was found to be very unstable under basic conditions and suffered immediate aerial oxidation to ba. Consequently, without isolating 5, treatment of the NaBH₄ reduction mixture with oxygen for 2 h at room temperature improved the yield of 6a up to 44% from 1.

 $\begin{array}{c} 7 & a, R = H \\ \sim & b, R = Ac \end{array}$

The similar oxygenation of N-formylkynurenine did not proceed and recovered unchanged. On the other hand, 2a and 2b were converted to be in 42% and 16% yields, respectively under the similar conditions, whereas in the absence of MB 2a and 2b were not oxidized to be.

Formation of 5 might be explained by the initial hydroperoxidation of para-position of the primary product 2 by dye-sensitized photooxygenation in alkaline phosphate buffer to give the quinoneimine 4 via 3 which was converted to 5 on treatment with NaBH₄ as shown in the Scheme. The mechanism of oxidation of 5 to 6 is not clear but may well involve the initial oxidation of the phenolate anion of 5 since 5 is quite stable in neutral media. Further support that the benzene ring oxidation can occur in the dye-sensitized photooxygenation was obtained by the reaction of N_b-methoxycarbonyltryptamine in the similar condition⁷ to give 3a,5-dihydroxy-1-methoxy-carbonylpyrroloindole Za which was identified as its 3a,8-diacetate Zb⁸ in 54% yield. However, 1-methoxy-carbonyl derivative Za is stable to air oxidation in alkaline phosphate buffer and was not converted to 5-hydroxy-N-formylkynurenine derivative.

These results appear to provide a new example of oxidation of aniline derivatives to quinoneimines by dyesensitized photooxygenation.

ACKNOWLEDGEMENT

We thank the Ministry of Education, Science, and Culture, Japan for financial support of the research.

REFERENCES AND NOTES

- (a) M. Nakagawa, H. Watanabe, S. Kodato, H. Okajima, T. Hino, J.L. Flippen, and B. Witkop, <u>Proc.Natl.Acad.Sci</u>., USA, 1977, <u>74</u>, 4730; (b) M. Nakagawa, S. Kato, S. Kataoka, and T. Hino, <u>J.Am.Chem.Soc</u>., 1979, <u>101</u>, 3136; (c) M. Nakagawa, S. Kato, S. Kataoka, S. Kodato, H. Watanabe, H. Okajima, T. Hino, and B. Witkop, <u>Chem.Pharm.Bull</u>., 1981, <u>29</u>, 1013; (d) M. Nakagawa, S. Kato, K. Nakano, and T. Hino, <u>J.C.S.Chem.Comm.</u>, 1981, 855.
- 2. Aqueous K2Cr2O7 was used as a liquid filter.
- 3. The buffer contained EtOH (5%). 6a was obtained in 17% yield at pH 8.4.
- 4. $\oint : \lambda \max (EtOH) \min (\epsilon) 231 (34800), 256 (11700), 262 (10600), 338 (4790); <math>\forall \max (KBr) cm^{-1}$ 3325, 1774, 1747, 1734, 1700, 1672, 1665, 1530; $\delta (CDCl_3, 270 \text{ MHz}) 2.32 (s, 3H, CH_3CO_2),$ 3.50 - 4.00 (m, 2H, CH₂), 3.69 (s, 3H, CO₂CH₃), 3.76 (s, 3H, NHCO₂CH₃), 3.79 (s, 3H, NHCO₂CH₃), 4.73 (m, 1H, NH-CHCO₂CH₃), 5.74 (d, 1H, J = 8.6 Hz, NH-CHCO₂CH₃, exchange-

able), 7.31 (dd, 1H, J = 2.4 and 9.2 Hz, C_4 -H), 7.58 (d, 1H, J = 2.4 Hz, C_6 -H), 8.53 (d, 1H, J = 9.2 Hz, C_3 -H), 10.86 (s, 1H, NH); m/z 396 (6) M^+ , 162 (100).

- 5. T. Hino, M. Taniguchi, and M. Nakagawa, Heterocycles, 1981, 15, 187.
- 6. The ratio of the <u>cis</u>- and <u>trans</u>-isomers 5 was estimated as 7 : 3 by the ¹H-NMR spectrum : δ (D₂O, 270 MHz) 3.89 (dd, 0.7H, J = 6.9 and 11.7 Hz, cis C₂-H), 4.35 (m, 0.3H, trans C₂-H), 5.32 (d, 0.3H, J = 5.9 Hz, trans C_{8a}-H), 5.40 (s, 0.7H, cis C_{8a}-H). See also reference 1c.
- 7. The buffer contained EtOH (10%).
- 8. $7b : mp 172-173 \circ C (MeOH), \lambda max (95\% EtOH) nm (e) 247 (14500), 282 (1770); <math>\sqrt{max} (KBr) cm^{-1}$ 3308, 1767, 1712, 1655; $\delta (CDCl_3, 270 MHz) 2.10 (s, 3H, OAc), 2.29 (s, 3H, NAc), 2.39 (m, 2H, CH_2), 2.80 - 2.95 (m, 2H, CH_2N), 3.67 (s, 3H, CO_2Me), 4.80 (broad s, 1H, OH), 5.65 (s, 1H, NCHN), 7.03 (dd, 1H, J = 8.9 and 2.6 Hz, C_6 H), 7.15 (d, 1H, J = 2.6 Hz, C_4 H), 7.89 (d, 1H, J = 8.9 Hz, C_7 H); m/z 334 (9) M⁺, 250 (100).$

Received, 19th September, 1983