SIX-MEMBERED MESOIONIC HETEROCYCLES, VII¹. SYNTHESIS AND STRUCTURE OF 1, 2, 4, 6-THIATRIAZINIUM-5-OLATE-1, 1-DIOXIDES

Willy Friedrichsen^{+a}, Gisela Möckel^a, and Tony Debaerdemaeker^b

^aInstitut für Organische Chemie der Universität Kiel, Olshausenstraße 40-60, D-2300 Kiel, FRG

^bSektion für Röntgen- und Elektronenbeugung der Universität Ulm Oberer Eselsberg, D-7900 Ulm, FRG

<u>Abstract</u> — The synthesis of 1, 2, 4, 6-thiatriazinium-5-olate-1, 1-dioxides $(\underline{3a}-\underline{f})$ is described. The geometry of $\underline{3e}$ has been determined by X-ray crystallography.

Almost all six-membered mesoionic compounds which could formally be derived from the m-quinodimethane dianion^{2,3}, carry a carbanion stabilizing group of the type C=X (X mainly O, S, -N). It would be of interest to know whether such groups could be replaced by SO_2 and how such an alteration influences the properties and the geometry of the heterocyclic system. In a preceding publication we have reported the preparation of a bicyclic five-membered mesoionic heterocycle; in this paper the synthesis of monocyclic mesoionic 1, 2, 4, 6-thiatriazinium-5-olate-1,1-dioxides (3a-f) will be described.

It is well known that six-membered mesoionic heterocycles of the m-quinodimethane dianion type can be prepared by the reaction of 1, 3-nucleophiles (amides, thioamides, amidines etc.) with 1, 3-electrophiles (reactive malonic acid derivatives, carbon suboxide, phenoxycarbonyl isocyanate etc.). In strict analogy to these syntheses simple amidines 12,13,14 ($\underline{1a}$ - \underline{f}) react with chlorosulphonyl isocyanate (CSI)($\underline{2}$) in the presence of tert. bases to give the expected heterocycles ($\underline{3a}$ - \underline{f}), which can be isolated as colorless, crystalline, high-melting substances. The IR spectra of these compounds show a carbonyl frequency in the region of 1705 - 1720 cm⁻¹. The UV spectra differ from those of $\underline{4}$ in so far as the intensive maxima are shifted hypsochromically 16 .

Unsymmetrically substituted amidines may give two isomers of type $\underline{3}$. The reaction of $\underline{1e}$ with CSI yielded only $\underline{3e}$; obviously the amino group of $\underline{1e}$ reacts - as it is known for other cases - with the isocyanate group of $\underline{2}$ giving an amidosulfochloride, which in the presence of the tert. base is cyclized to $\underline{3}$. The hydrolysis of $\underline{3c}$ and $\underline{3f}$ (acetonitrile, 2N sodium carbonate, RT) yields the amidosulfonic acids $\underline{5c}$ (53%,colorless needles, mp 108° C; IR(KBr): 1185, 1310, 1700, 3220 cm^{-1}) and $\underline{5f}$ (55%,colorless prisms, mp 114° C; IR(KBr): 1165, 1365, 1695, 3360 cm⁻¹). Kinetic investigations have shown that the compounds of type $\underline{4}$ are hydrolyzed by a factor of 10° faster than compounds of type $\underline{3}$.

The geometry of these new heterocycles is of special interest. An X-ray structure determination

$$R^{1}$$
 R^{2}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{3

$$R^{1}$$
 R^{2}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{3}
 R^{4}
 R^{5}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5

Table: Spectral Data of 1, 2, 4, 6-Thiatriazinium-5-olate-1, 1-dioxides (3)

		_		
<u>3</u>	mp (°C)	IR(KBr); cm ⁻¹	UV(CH3CN);	1 H-NMR; δ in ppm (TMS)
	(yield)		λ (lg ε)	
<u>a</u>	222(dec)	1190, 1335, 1710	235 (4.098) ^b ,	7.51 (s, 5 H), 7.62 (s, 5 H), 8.70 (s, H3)) ^C
	(37 %)		267 (3.950) ^b	
<u>b</u>	-236(dec)	1190, 1340, 1705	230 (3.943),	1.91 (s, CH ₃), 7.52 (s, 5 H), 7.65 (s, 5 H) ^d
	(80 %)		266 (3, 493) ^b	•
<u>c</u>	245(dec)	1190, 1330, 1720	•	6.9 - 7.6 ^d
	(93%)		275 (3. 781) ^b	•
<u>d</u>	268(dec)	1170, 1315, 1705	244 (4.075)	3.01 (s, CH_3), 3.15 (s, CH_3), 7.72 (s, 5 H) ^d
	(84 %)		*	ů ů
<u>e</u>	257(dec)	1185, 1350, 1710	245 (3.979)	3.11 (s, CH ₃), 7.17 - 7.52 (m, 10 H) ^d
	(99 %)			•
<u>f</u>	235 (dec)	1195, 1340, 1720	230 (4, 506),	2.04 (s, CH ₃), 3.80 (s, OCH ₃), 3.82 (s, OCH ₃),
	(79 %)		263 (3.805),	7.0 - 7.65 (m, 8 H)
			278 (3. 726) ^b	

Footnotes to the table:

^aAll new compounds gave satisfactory analytical data. ^bShoulder. ^cIn CD₃CN.

d_{In DMSO-d6}.

of $3e^{18}$ shows that the N(5) - C(19) and S(1) - N(3) bonds (numbered as in fig. 1) are - expectedly - unusually long (1.489 Å, 1.743 Å), whereas the C(19) - O(2) distance (1.216 Å) is comparable to other simple carbonyl compounds of this type. Remarkably the molecule is not planar. The sulfur atom S(1) appears 0.5867 Å above the N(3) - C(6) - N(5) - C(19) - N(17) plane; the angle between this plane and the N(3) - S(1) - N(17) plane 19 amounts to 145.42°. The influence of a d orbital participation of the hypervalent sulfur 21 upon the geometry and the electronic structure of compounds of this type is open to question.

Fig. 1: X-ray structure of 3e

ACKNOWLEDGEMENT The generous support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

REFERENCES

- Presented in part at the 9th Int. Congr. Het. Chem., Tokyo 1983. Part VI: W. Friedrichsen and M. Schildberg, Heterocycles 20, 431 (1983).
- 2. Review: W. Friedrichsen, Th. Kappe, and A. Böttcher, Heterocycles 19, 1089 (1982).
- 3. The term "mesoionic" has not been fixed unequivocally until now. Whereas some authors deviating from their original suggestion 4 prefer a restrictive usage 5 , 6 including only five membered mesoionic heterocycles of type A and B 5 , others propose a broader definition extending this term to mesoionic [n]annulenes with n = 4,6, and higher 2 ,7-10 values.
- 4. 4a. W. Baker and W. D. Ollis, Chem. Ind. [London] 1955, 910. 4b. W. Baker and W. D. Ollis, Quart. Rev. 11, 15 (1957).
- 5. W. D. Ollis and C. A. Ramsden, Adv. Heterocycl. Chem. 19, 1 (1976).
- 6. C.G. Newton and C.A. Ramsden, Tetrahedron 20, 2965 (1982).
- 7. 7a. A. H. Schmidt in Oxocarbons (R. West), p. 185. Academic Press, New York 1980. -

- 7b. A. H. Schmidt, Synthesis 1980, 961.
- 8. 8a. L. Bonsignore, G. Loy, A. M. Maccioni, and S. Cabbidu, J. Chem. Soc., Chem. Comm. 1982, 850. 8b. A. J. Boulton, J. Chem. Soc., Chem. Comm. 1982, 1328.
- 9. A.T. Balaban in Chemical Applications of Graph Theory (A.T. Balaban), p. 63. Academic Press, New York 1976.
- 10a. C. W. Haigh, MATCH <u>1977</u>, 87. 10b. E.K. Lloyd in Combinatorics. Proc. Brit. Combinatorial Conf. 1973 (T. P. Donough and V. C. Mavron), p. 97. Cambridge University Press 1974.
- 11. W. Friedrichsen, A. Böttcher, and T. Debaerdemaeker, Heterocycles 20, 845 (1983).
- 12. The Chemistry of Amidines and Imidates (S. Patai). John Wiley & Sons, New York 1975.
- 13. Reactions of isothioureas with CSI: S. Karady, J. S. Amato, D. Dortmund, A. A. Patchett, R. A. Reamer, R. J. Tull, and L. M. Weinstock, Heterocycles 12, 1199 (1979).
- 14. Reactions with trisubstituted formamidines: H. Suschitzky, R.E. Walrond, and R. Hull, J. Chem. Soc., Perkin Trans. 1 1977, 47.
- 15. 15a. W. A. Szabo, Aldrichimica Acta <u>10</u>, 23 (1977). 15b. J. W. McFarland, Sulfur Reports <u>1</u>, 215 (1981).
- 16. Compound $4b^{17}$ shows an absorption at 295 nm with low intensity ($\lg \varepsilon = 2.534$ nm, in acetonitrile).
- 17. R.A. Coburn and B. Bhooshan, J. Heterocyclic Chem. 12, 187 (1975).
- 18. Space group $P2_1/c$; a = 8.020 Å, b = 14.527 Å, c = 12.658 Å, $\beta = 103.0 ^{\circ}$, Z = 4, R = 4 %.
- Similar observations have been reported by other authors: 19a. C.Esteban-Calderon, M. Martinez-Ripoll, and S.Garcia-Blanco, Acta Cryst. C 39, 440 (1983) and references cited therein. 19b. J.Elguero, C.Ochoa, M. Stud, C.Esteban-Calderon, M. Martinez-Ripoll, J.-P. Fayet, and M.-C. Vertut, J. Org. Chem. 47, 536 (1982)²⁰.
- 20. Thanks are due to Dr.C.Ochoa, Instituto de Quimica Medica, CSIC, Madrid, Spain for further details of the X-ray structures reported in this paper.
- 21. P.G. Mezey and E.-C. Haas, J. Chem. Phys. 77, 870 (1982).

Received, 19th September, 1983