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Abstract -Acetylenic thiazoles of proper design have been shown to undergo 

an intramolecular Diels-Alder reaction leading directly to fused-ring thio- 

phene derivatives. 

We have recently reported that acetylenic oxazoles of type undergo a facile intramolecular 

Diels-Alder reaction, leading, %intermediate 5, to highly substituted furans of type 3  is is - 
~eteroannula t ion" ,  Scheme 1 ) .  ' This methodology h a s  been successfully applied to the synthesis 
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of a variety of furanosesquiterpenes. ' and we have been intrigued with the possibility that thia- 

zoles of type 4 might exhibit similar reactivity. Such a transformation could be of considerable 

practical importance since it  is obvious, for example, that a 8-substituted thiophene can be con- 

sidered as  a latent "isopreneoid" unit. "urthermore, substitution patterns of the type general- 

ized in 7 a r e  both exceedingly common in nature and sometimes difficult to obtain using present- - 
ly available techniques.' 

A major difficulty with this approach is the lack of reactivity of thiazoles in Diels-Alder reac- 

tions. To the best of our knowledge there has been only one report of a reaction of this class, 

and even in this case the primary adduct was not isolated. This lack of reactivity i s  presumably 

due to the greater aromaticity of thiazoles relative to oxazoles,' a s  well as  to the high nucleo- 

philicity of the thiazole ring. '.' 2.4-Dimethylthiazole (K), for example, reacts with dimethyl 

acetylenedicarhoxylate to give adducts 2 and 2 a s  the only isolated products (Scheme 2). ' We 
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have now found, however, that intramolecular variants of this reaction are  possible if proper 

geometrical restraints are  imposed. 

Thiazoles &-d were prepared following standard literature procedures, '" and they were sub- 

jected to a range of cyclization conditions (Scheme 3 ) .  Not surprisingly, both % and s 
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reacted exclusively to give products derived from intermediates and 12b (path a) . '  In each 

case models clearly indicate that the 7-=-d& transition state required for path a is highly fa- 

vored, and no t race of thiophenes = o r  % could be detected in the crude reaction mixtures. 

Thus, for example, after brief heating (refluxing ethylbenzene, 3 h)  all  fi was consumed and 

a single major product was evident by TLC (Rf = 0. 60, 20% acetonelhexane, silica gel). This 

product was isolated a s  a highly unstable crystalline solid, mp 90 - 92' C (yield 55 - 60% yield), 

and assigned structure 2 on the basis of mechanistic considerations' as  well a s  the following 
I5 

C0,Et 

observations." First ,  elemental analysis and mass spectral data showed that 14 was isomeric 

with I&, thereby ruling out the possibility of an intramolecular Diels-Alder reaction with loss 

of acetonitrile. ' Second, the infrared spectrum (CHC1,) of 14 was devoid of absorptions in the 

regions expected for  hydroxyl o r  acetylenic bond stretching, and all attempts at preparing an 

acetate derivative failed. The major IR peaks (1690, 1605 cm-I), however, agreed precisely 

with those expected for a B-aminoacrylate system (cf. compound 15, IR 1690, 1595 cm-I) ' I .  

Third, the "C NMR data was in full accord with structure 14 and in particular indicated the ab- 

sence of an aromatic thiazole ring. Absorptions for  C-2 and C-3, however, were readily ap- 

parent at 137. 5 and 114.7 ppm, and of particular importance the assigned values for C-5, C- 15, 

and C-16 (159.2. 84.6 and 167. 9 ppm, respectively) are in excellent agreement with those found 

in the model system 15 (164. 1, 77.3 and 169.7 ppm, respectively, for C-11, C-14 and C-15). " 

These absorptions would appear to be highly characteristic of the B - aminoacrylate system. In 

addition, the position of absorption for C-10 (110.3 ppm) is in total agreement with the closely 

related system e 1 q 9 5 .  1 ppm for C-6) after correcting for standard incremental substituent 

effects. ' q o u r t h ,  the 'H NMR spectrum of 2, including exhaustive decoupling experiments, is 

in full accord with the assignments made above. 'O In particular, the E-configuration at Cg - Cli 

i s  based on the logical expectation of a facile equilibration to the thermodynamically most stable 

isomer, a s  well a s  the strongly deshielding influence of the es te r  functionality on H-6 (5.91 ppm). 

Finally, it i s  interesting to note that although 14 i s  undoubtedly an unusual structure, Dreiding 

models of this compound a r e  virtually free of strain. 



In contrast to the results presented above neither nor ild a r e  electronically disposed to 

undergo the 7-exo- process, - and the alternative 8-endo-dig cyclization is geometrically im- 

possible. Therefore, we believed, these materials should be more amenable to undergoing an 

intramolecular Diels-Alder reaction. Our initial efforts in this area, however, were unreward- 

ing. Thus, thiazole suffered mainly slow decomposition to polar products over a period of 

several days in refluxing ethylbenzene (- 138' C), and all attempts at catalyzing this process 

were either ineffective ( B F ~ .  E t P ,  Hg(OAc),, TsOH, ZnCl,), o r  led to addition reactions at the 

acetylenic triple bond (AlC1,). l 3  Also, higher temperatures led to rapid decomposition which 

could not he controlled by the addition of various radical scavengers, including, fo r  example, 

3-terbbutyl-4-hydroxy-5-methylphenyl - sulfide and 4,4'-butylidene-$-6-~t-butyl-m-cresol. l4 

With thiazole G, however, the additional activating influence of a methoxyl group apparently 

facilitates the Diels-Alder process. Thus, in the presence of a catalytic amount of methylene 

blue, - l l d  gave a 60% yield of thiophene after 3 days at reflux in degassed mesitylene (165'). 

That was actually in hand was unequivocally established by all of the usual criteria,  l6 a s  well 

a s  the fact that i ts  'H NMR spectrum was virtually superimposable with that of the previously 

described furan analog 13-methoxymethyl-4-keto-6-methyl-4.5.6, 7-tetrahydrobenzofuranl. '' 
This example, then, provides the first  conclusive evidence that thiazoles can undergo the Diels- 

Alder reaction with acetylenic dienophiles in exactly analogous fashion a s  their oxazole counter- 

parts. 

In closing, we might only add that the intramolecular nature of these reactions should be even 

more favorable in multicyclic systems such as  4 (A, B = cycloalkyl) since the reacting centers 

a r e  held more rigidly in proximity to each other. Therefore, we believe, reactions of this type 

might find considerable applicability in the synthesis of naturally occurring terpenes. 
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