HETEROCYCLES IN ORGANIC SYNTHESIS. PART VI¹ - A FACILE SYNTHESIS OF 1-(4-ARYL-2-THIAZOLYL)-2-PROPANONES Harjıt Sıngh, Sunil K. Aggarwal, and Nageshwar Malhotra Department of Chemistry, Guru Nanak Dev University Amrıtsar - 143 005, India

Abstract - Reactions of ω -(6-methyl-4-pyrimidinylthio)acetophenones (1) with aq. HCl/HClO₄ or POCl₃ followed by hydrolysis provide 1-(4-aryl-2-thiazolyl)²2-propanones (3).

Heterocyclic cations form pseudobases with water or hydroxide ion. In case the carbon attached to hydroxyl group is bonded to two heteroatoms, it undergoes easy extrusion² and the isolation of the residual skeleton of the precursor provides an entry into various categories of organic compounds. Thus thiazolo[3,2-c]quinazolin-4-ium cations formed as transient species by acid catalysed cyclodehydration of $\omega - (4 - quinazolinylthio)$ acetophenones provide 2-(o-aminophenyl)thiazoles.³ Here we report that ω -(6-methyl-4-pyrimidinglthio)acetophenones 1 or 2 can be converted to otherwise so far unknown 1-(4-ary1-2-thiazoly1)-2-propanones 3. ω -(6-Methyl-4-pyrimidinylthio)acetophenones <u>1</u>(R=H,Cl,Br,CH₃,OCH₃), obtained by the reactions of pyrimidine-4(3H)-thione with phenacyl halides, on refluxing in hot methanol and HC1/HCl0, (1 : 1) for 35-40 h gave the corresponding 2,5-diaryl-1,4dithiins¹ and 1-(4-ary1-2-thiazoly1)-2-propanones <u>3</u>(R=H,C1,Br,CH₂,OCH₂) (Table). Likewise, ω -(6-methyl-4-pyrimidinylthio)cyclohexanone 2 gave only 6 in 40-50 % yield. The formation of 1-(4-aryl-2-thiazolyl)-2-propanones 3 can be visualised through the cyclodehydration of ω -(6-methyl-4-pyrimidinylthio)acetophenone 1 to the transient structure, thiazolo[3,2-c]pyrimidinium cation 4 followed by hydrolytic C-2 extrusion to enamine 5, which could hydrolyse to give 3. We argued that the use of aqueous medium in these reactions might be responsible for the relatively low yields of 3 as the nucleophilic substitution at C-4 generating mercaptoacetophenones and thereby forming 2,5-diaryl-1,4-dithins

hydrolytic conditions and subsequent hydrolysis of the cation might provide the product in better yields. Thus ω -(6-methyl-4-pyrimidinylthio)acetophenones <u>l</u>(R=Cl,H,Br,CH₃,OCH₃) and <u>2</u> were refluxed in POCl₃ for l0-l2 h. After the removal of the solvent and treatment with saturated aq. solution of NaHCO₃ followed by work-

competes with the initial cyclodehydration. Hence cyclodehydration under non-

Table						
Compound ^a	b	Yıeld (8) C		mp (°C)	M ⁺ (m/e)
$\underline{3}$ (R = C1)	40	(15) ^d	50	(10) ^d	103-106	251
$\underline{3}$ (R = Br)	40	(20)	50	(10)	112-115	295
$\underline{3}$ (R = CH ₃)	35	(15)	45	(5)	oll	231
$\underline{3}$ (R = OCH ₃)	35	(20)	45	(5)	oil	247
$\underline{3}$ (R = H)	40	(15)	50	(5)	oil	217
<u>6</u>	40	-	50	-	123-127	195

up the corresponding $\underline{3}$ and $\underline{6}$ were isolated in 45-50 % yields and dithins were formed in negligible amounts.

a) All compounds gave satisfactory i.r. and n.m.r. data. The 2H signal in the 1 H n.m.r. spectrum got completely exchanged with D₂O (ovemight) indicating the highly acidic active methylene character. b) Using HCl/HClO₄. c) Using POCl₃. d) Yields of the corresponding 2,5-diaryl-1,4-dithlins formed.

ACKNOWLEDGEMENT We thank C.S.I.R. for financial assistance and Prof. P. J. Scheuer of University of Hawaii, for high resolution mass spectra.

REFERENCES

- 1. H. Singh, S. K. Aggarwal, and N. Malhotra, <u>Heterocycles</u>, 1983, 20, 983.
- S. Tee, M. Tranı, R. A. McClelland, and N. E. Seaman, <u>J. Am. Chem. Soc.</u>, 1982, <u>104</u>, 7219 and references therein.
- 3. H. Singh, C. S. Gandhi, and M. S. Bal, Indian J. Chem., 1981, 208, 17.

Received, 30th September, 1983