ON THE REACTION OF INDOLE WITH SODIUM BOROHYDRIDE IN TRIFLUOROACETIC ACID¹

Gordon W. Gribble*, Charles F. Nutaitis, and Robert M. Leese Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755 USA

<u>Abstract</u> - The reaction of indole (<u>1</u>) with sodium borohydride in trifluoroacetic acid gives, successively, indoline (<u>3</u>), <u>N</u>-(2,2,2-trifluoroethyl)indoline (<u>4</u>), and 1,1,1-trifluoro-2, 2-bis[5-(<u>N</u>-(2,2,2-trifluoroethyl)indolinyl)]ethane (<u>5</u>), whose structure is established by chemical and spectral means. Similar reactions are observed with <u>N</u>-methylaniline (<u>8</u>) and anisole, but not with dibenzazepines <u>13</u> and <u>15</u>, which give only N-trifluoroethylation.

Several years ago we reported² that sodium borohydride (NaBH₄) in carboxylic acid media effects the reduction and alkylation of indoles to give <u>N</u>-alkylindolines, <u>1+2</u>, but that sodium cyanoborohydride (NaBH₃CN) in acetic acid at room temperature brings about reduction of the indole double bond without <u>N</u>-alkylation, <u>1+3</u>.^{3,4}

In contrast to the other carboxylic acids that we studied,^{2,5} the stronger acids formic and trifluoroacetic (TFA) gave somewhat erratic results with indole and lower yields of 2 and 3. In an earlier paper we described⁶ the structure of the major product that forms in the reaction of <u>1</u> with NaBH₄/HCO₂H. We now report our studies on the reaction of <u>1</u> (and <u>3</u>) with NaBH₄/TFA.

Treatment of a mixture of $NaBH_4$ pellets (Ventron) and TFA at 25°C with <u>1</u> followed by refluxing and the addition of more $NaBH_4$ gives, after 6 h and then workup, a crude product which can be separated into a basic and neutral fraction. Distillation of each fraction or flash chromatography (hexane: Et_2^0) of the crude product <u>in toto</u> affords indoline (<u>3</u>) (bp 54°C/0.6 torr) (40% yield), identified by

comparison with a commercial sample (ir, uv, tlc), and two neutral compounds $\underline{4}$ (5% yield) and $\underline{5}$ (13% yield) (Scheme I).

The reaction of indoline (3) with NaBH₄/TFA/60°C gives recovered 3 (51%), 4 (7%), and 5 (34%). The minor neutral product 4 is N-(2,2,2-trifluoroethyl)indoline⁷ (bp 55°C /0.7 torr) as evidenced from its spectral and analytical data,¹² and further characterized by independent synthesis. Thus, treatment of 3 with trifluoroacetic anhydride (TFAA) (PhH, 0-5°C) gives N-trifluoroacetylindoline (6)¹³ (96% yield). Reduction of 6 using Umino's procedure¹⁴ for reducing amides affords 4 (58% yield) identical with that obtained from 1 (tlc, ir, ¹H nmr, ¹⁹F nmr). Furthermore, 4 can be oxidized to N-(2,2,2-trifluoroethyl)indole (7)¹⁵ with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (PhH, 25°C, 1 h) in 89% yield, and 7 can be reduced back to 4 with NaBH₄/TFA/25°C in 40% yield but not with NaBH₄/HOAc/ reflux (3% yield) in accord with our observations³ on weakly basic indoles under these conditions. Attempts to alkylate 3 with 2,2,2-trifluoroethyl iodide or p-toluenesulfonate under several conditions were unsuccessful.

The molecular formula of the major neutral product 5 (mp 104.5-105.5°C) is $C_{22}H_{19}N_2F_9$ from mass spectrometry and combustion analysis.¹⁶ The ir and uv spectra of 5 are very similar to those of 4. The ¹⁹F nmr spectrum clearly indicates that 5 contains two equivalent $-CH_2CF_3$ groups (71.5 ppm, t, ${}^3J_{HF} = 9.8$ Hz) and one $CHCF_3$ group (66.8 ppm, d, ${}^3J_{HF} = 9.8$ Hz). By comparison the N-CH₂CF₃ group in 4 resonates at 71.4 ppm (t, ${}^3J_{HF} = 9.8$ Hz). These data suggest that 5 is comprised of two N-(2,2,2-trifluoroethyl) indolinyl groups bridged with a $CHCF_3$ group. The symmetry of 5 is further revealed by the ¹³C nmr spectrum which shows signals for only 12 carbons.¹⁶ Since the ¹H nmr spectrum displays the ratio 6:1:12 for aryl: methine:methylene protons, 5 must be one of A-E.

-380 -

The ¹H nmr spectrum (60 or 300 MHz) of 5 also reveals two high-field aromatic protons at 6.35 ppm as a sharp doublet (J = 8.4 Hz). Since the ortho and para protons in aromatic amines are invariably shielded¹⁷ relative to benzene (7.3 ppm), structures B and D can be excluded from consideration because they would each have four such protons and, in fact, would exhibit more complex spliting due to meta coupling. The lack of additional ortho coupling involving these two protons eliminates structure E. Structure A is unlikely on a mechanistic basis (presumed to be an unstable aminal) and, in any event, can be rejected by our observation that 4 is converted to 5 upon treatment with NaBH,/TFA/reflux (52% yield). Hence 5 must have structure C. This is reasonable mechanistically since para substitution in the Friedel-Crafts alkylation of arenes with aldehydes to give para, para'diarylmethanes is well known (e.g., the synthesis of DDT from chlorobenzene, CCl_3CHO , and H_3SO_4).¹⁸ Moreover, we believe⁵ that trifluoroacetaldehyde or its synthetic equivalent is generated in the reaction between NaBH, and TFA. Indeed, 4 is transformed into 5 by treatment with commercially available trifluoroacetaldehyde ethyl hemiacetal in refluxing TFA (57% y1eld).

Since we find that 3 is converted first to 4 and then to 5 with $NaBH_4/TFA$, it seems clear that the reaction sequence is: 1 + 3 + 4 + 5. It is interesting to note that we observe no products resulting from the formation and subsequent reactions of "indole dimer"¹⁹ and "trimer"²⁰which form in acid including TFA.²¹ This is presumably because 1 is reduced to 2 faster than dimerization of 1 can occur.

We next examined the reaction of several other substrates with NaBH₄/TFA. The reaction of <u>N</u>-methylaniline (<u>8</u>) with NaBH₄/TFA parallels that of <u>3</u>, as shown in Scheme II, to give <u>N</u>-(2,2,2-trifluoroethyl)-<u>N</u>-methylaniline (<u>9</u>)²² (2% yield) and 1,1,1-trifluoro-2,2-bis[4-(<u>N</u>-(2,2,2-trifluoroethyl)-<u>N</u>-methylanilino)]ethane $(\underline{10})^{23}$ (22% yield). The para substitution pattern in <u>10</u> is clearly evident from the ¹H and ¹³C nmr spectra. Treatment of <u>9</u> with NaBH₄/TFA/reflux gives <u>10</u> (46% yield), and <u>9</u> can by synthesized from amide $\underline{11}^{24}$ (89% from <u>8</u>) by reduction using Umino's procedure¹⁴ (32% yield).

Anisole reacts with $NaBH_4/TFA$ to give 1,1,1-trifluoro-2,2-bis(4-methoxy-phenyl)ethane (12)²⁵ (47% yield), a known compound²⁶ with DDT-like insecticidal properties.²⁷

An attempt to reduce the double bond in 5H-dibenz[b,f]azepine (13) using $NaBH_4/TFA$ led only to N-(2,2,2-trifluoroethyl)-5H-dibenz-[b,f]azepine (14)²⁸ (61% yield) and not to N-(2,2,2-trifluoroethyl)-10,11-dihydro-5H-dibenz[b,f]azepine

 $(\underline{16})^{29}$ which was prepared independently from $\underline{15}$ (44% yield). In both cases the yields are for recrystallized and analytically pure material.

ACKNOWLEDGMENTS

This investigation was supported in part by Merck Sharp and Dohme Research Laboratories, the Research Committee of Dartmouth College, and the Petroleum Research Fund, administered by the American Chemical Society. We also thank Dr. Catherine E. Costello (Massachusetts Institute of Technology) for the high resolution mass spectra (National Institutes of Health Research Grant FR00317 from the Division of Research Facilities and Resources) and Mr. Robert C. Wade of Ventron Corporation (Danvers, Mass.) for a supply of sodium borohydride.

REFERENCES AND NOTES

- This paper is Part XIII in the series "Reactions of Sodium Borohydride in Acidic Media." For Part XII, see C.F. Nutaitis and G.W. Gribble, <u>Tetrahedron</u> <u>Lett.</u>, 1983, 24, 4287.
- 2. G.W. Gribble, et. al., J. Am. Chem. Soc., 1974, 96, 7812.
- 3. G.W. Gribble and J.H. Hoffman, Synthesis, 1977, 859.
- 4. At higher temperatures (50°C) N-ethylation (50-60%) has been reported:
 Y. Kumar and L. Florvall, Syn. Comm., 1983, 13, 489.
- 5. For a review, see G.W. Gribble, Eastman Org. Chem. Bull., 1979, 51, 1.
- 6. G.W. Gribble and S.W. Wright, Heterocycles, 1982, 19, 229.
- 7. Following our initial report², several groups have described the <u>N</u>-trifluoroethylation of amines.⁸⁻¹¹
- 8. G.W. Gribble and P.W. Heald, Synthesis, 1975, 650.

- (a) N.F. Kucherova, N.N. Novikova, N.M. Sharkova, I.D. Silenko, and V.A. Zagorevskii, <u>Khim. Geterotsikl. Soedin.</u>, 1977, 995; (b) D. Herlem and F.K.-Huu, Tetrahedron, 1979, 35, 633.
- 10. B.E. Maryanoff and D.F. McComsey, J. Org. Chem., 1978, 43, 2733.
- 11. M. Oklobdzija, T. Fajdiga, T. Kovac, F. Zonno, A. Sega, and V. Sunjic, <u>Acta</u> <u>Pharm. Jugosl.</u>, 1980, 30, 121.
- 12. <u>4</u>: ¹H nmr (CDCl₃) & 2.8 (m, 2H), 3.3 (m, 4H), 6.3-7.1 (m, 4H); ¹³C nmr (CDCl₃) & 28.6, 51.9 (q, ²J_{CF} = 33.4 Hz), 54.6, 106.4, 118.6, 124.6, 125.2 (q, ¹J_{CF} = 279.9 Hz), 127.3, 128.9, 150.8; ¹⁹F nmr (CDCl₃, rel to CFCl₃) & 71.4 (t, ³J_{HF} = 9.8 Hz); ir (neat) \vee 2930, 2850, 1610, 1495, 1315, 1260, 1140, 1025 cm⁻¹; uv (EtOH) λ max 247, 257, 298 nm; mass spectrum, m/e (rel int) 201 (M⁺, 33), 132 (100), 117 (29), 103 (6.5), 91 (14), 77 (16), 65 (30). Anal. calcd for C₁₀H₁₀NF₃: C, 59.70; H, 5.01; N, 6.96. Found: C, 59.92; H, 5.08; N, 6.87.
- 13. <u>6</u>: mp 65-66°C; ¹H nmr (CDCl₃) δ 3.2 (m, 2H), 4.3 (m, 2H), 7.2 (m, 3H), 8.2 (m, 1H); ¹³C nmr (CDCl₃) δ 28.3, 47.7, 116.0 (q, ¹J_{CF} = 287.5 Hz), 117.8, 124.7, 125.7, 127.7, 131.5, 141.5; ¹⁹F nmr (CDCl₃, rel to CFCl₃) δ 73.1 (s); ir (CHCl₃) ν 2920, 1700, 1490, 1255, 1150 cm⁻¹; uv (EtOH) λ max 257, 268 sh, 282, 288 nm; mass spectrum, m/e (rel int) 215 (M⁺, 89), 146 (52), 128 (66), 118 (88), 91 (100), 77 (17), 69 (23), 65 (34). Anal. calcd for C₁₀H₈NOF₃: C, 55.82; H, 3.75; N, 6.51. Found: C, 55.94; H, 3.76; N, 6.50.
- 14. N. Umino, T. Iwakuma, and N. Itoh, Tetrahedron Lett., 1976, 763.
- 15. $\underline{7}$: mp 46.5-47°C; ¹H nmr (CDCl₃) & 4.5 (q, 2H, ³J_{HF} = 9 Hz), 6.45 (d, 1H, J = 4 Hz), 6.9-7.2 (m, 4H), 7.55 (m, 1H); ¹³C nmr (CDCl₃) & 47.3 (q, ²J_{CF} = 35.2 Hz), 103.6, 108.9, 120.3, 121.1, 122.4, 123.7 (q, ¹J_{CF} = 280.8 Hz), 128.1, 128.5, 136.5; ¹⁹F nmr (CDCl₃' rel to CFCl₃) & 71.9 (t, ³J_{HF} = 9.8 Hz); ir (CHCl₃) \vee 3060, 3000, 2950, 1465, 1270, 1230, 1210, 1165, 1140 cm⁻¹; uv (EtOH) λ max 263, 277, 281 sh, 289 nm; mass spectrum, m/e (rel int) 199 (M⁺, 16), 130 (42), 103 (6), 85 (7), 77 (14), 40 (100). Anal. calcd for $C_{10}H_8NF_3$: C, 60.31, H, 4.05; N, 7.03. Found: C, 60.42; H, 4.13; N, 6.93.
- 16. $\underline{5}$: ¹H nmr (CDCl₃) δ 2.9 (m, 4H), 3.4 (m, 8H), 4.4 (q, 1H, J = 10.2 Hz), 6.35 (d, 2H, J = 8.4 Hz), 7.0 (m, 4H); ¹³C nmr (CDCl₃) δ 28.5, 51.7 (q, ²J_{CF} = 33.5 Hz), 54.2 (q, ²J_{CF} = 27.2 Hz), 54.7, 106.1, 125.1 (q, ¹J_{CF} = 280.0 Hz), 125.2, 126.2, 126.5 (q, ¹J_{CF} = 280.5 Hz), 128.2, 129.5, 150.4; ¹⁹F nmr (CDCl₃, rel to CFCl₃) δ 66.8 (d, 3F, ³J_{HF} = 9.8 Hz), 71.5 (t, 6F, ³J_{HF} = 9.8 Hz);

ir $(CHCl_3) \vee 2940$, 2860, 1625, 1510, 1275, 1160 cm⁻¹; uv (EtOH) λ max 262, 298 nm; mass spectrum, m/e (rel int) 482 (M⁺, 11), 413 (48), 282 (7), 213 (4), 207 (11), 172 (100), 130 (40). Anal. calcd for $C_{22}H_{19}N_2F_9$: C, 54.78; H, 3.97; N, 5.81. Found: C, 54.72; H, 3.99; N, 5.81.

- 17. H. Spiesecke and W.G. Schneider, J. Chem. Phys., 1961, 35, 731.
- 18. E.L. Bailes, <u>J. Chem. Ed.</u>, 1945, 22, 122.
- 19. H.F. Hodson and G.F. Smith, J. Chem. Soc., 1957, 3544.
- 20. (a) G.F. Smith, <u>Chem. & Ind.</u>, 1954, 1451; (b) W.E. Noland and W.C. Kuryla, <u>J. Org. Chem.</u>, 1960, 25, 486; (c) H. Ishii, K. Murakami, Y. Murakami, and K. Hosoya, <u>Chem. Pharm. Bull.</u>, 1977, 25, 3122.
- 21. J. Bergman, J.-E. Bäckvall, and J.-O. Lindström, Tetrahedron, 1973, 29, 971.
- 22. <u>9</u>: bp 54-55°C/0.4 torr; ¹H nmr (CDCl₃) & 2.95 (s, 3H), 3.8 (q, 2H, J = 9 Hz), 6.35 (m, 3H), 7.25 (m, 2H); ¹³C nmr (CDCl₃) & 39.0, 54.2 (q, ²J_{CF} = 32.6 Hz), 112.6, 118.1, 125.5 (q, ¹J_{CF} = 283.0 Hz), 129.1, 148.5; ¹⁹F nmr (CDCl₃, rel to CFCl₃) & 70.8 (t, ³J_{HF} = 9.8 Hz); ir (neat) \vee 2920, 1610, 1515, 1375, 1270, 1160, 1000 cm⁻¹; uv (EtOH) λ max 245, 290 nm; mass spectrum, m/e 189.0776 (M⁺, calcd for C₉H₁₀NF₃ 189.0765), 138, 120 (100%), 105, 104, 77.
- 23. $\underline{10}$: mp 74.5-75.5°C; ¹H nmr (CDCl₃) & 3.0 (s, 6H), 3.8 (q, 4H, J = 9 Hz), 4.5 (q, 1H, J = 9 Hz), 6.7 (m, 4H), 7.2 (m, 4H); ¹³C nmr (CDCl₃) & 39.0, 53.6 (q, ²J_{CF} = 27.3 Hz), 54.1 (q, ²J_{CF} = 32.7 Hz), 112.5, 125.2, 125.4 (q, ¹J_{CF} = 282.8 Hz), 126.4 (q, ¹J_{CF} = 280.3 Hz), 129.7, 147.9; ¹⁹F nmr (CDCl₃, rel to CFCl₃) & 66.9 (d, 3F, ³J_{HF} = 9.8 Hz), 71.0 (t, 6H, ³J_{HF} = 9.8 Hz); ir (CHCl₃) v 2910, 1615, 1520, 1375, 1265, 1150 cm⁻¹; uv (EtOH) λ max 257, 292 nm; mass spectrum, m/e (rel int) 458 (M⁺, 19), 389 (69), 305 (22), 277 (3), 270 (8), 221 (10), 194 (18), 160 (100), 118 (67). Anal. calcd for C₂₀H₁₉N₂F₉: C, 52.41; H, 4.18; N, 6.11. Found: C, 52.37; H, 4.22; N, 6.06.
- 24. E.J. Bourne, S.H. Henry, C.E.M. Tatlow, and J.C. Tatlow, <u>J. Chem. Soc.</u>, 1952, 4014; <u>11</u>: ¹_H nmr (CDCl₃) δ 3.35 (s, 3H), 7.3 (m, 5H); ¹³C nmr (CDCl₃) δ 39.2, 116.1 (q, ¹J_{CF} = 287.8 Hz), 127.0, 128.7, 129.2, 140.3, 156.5 (q, ²J_{CF} = 35.8 Hz); ¹⁹F nmr (CDCl₃, rel to CFCl₃) δ 67.5; ir (neat) \vee 3075, 2940, 1700, 1600, 1500, 1405, 1220, 1210, 1150, 700 cm⁻¹.
- 25. <u>12</u>: ¹H nmr (CDCl₃) δ 3.65 (s, 6H), 4.5 (q, 1H, J = 10 Hz), 6.8 (m, 4H), 7.3 (m, 4H); ¹³C nmr (CDCl₃) δ 53.8 (q, ²J_{CF} = 27.4 Hz), 55.0, 113.9, 126.3 (q, ¹J_{CF} = 280.1 Hz), 127.6, 129.9, 159.0; ¹⁹F nmr (CDCl₃, rel to CFCl₃) δ 66.9 (d, ³J_{HF} = 9.8 Hz); ir (neat) v 2950, 2850, 1620, 1520, 1270, 1255,

1195, 1185, 1145 cm⁻¹.

- 26. A. Kaluszyner, S. Reuter, and E.D. Bergmann, J. Am. Chem. Soc., 1955, 77, 4164.
- 27. (a) A.S. Tahori, <u>J. Econ. Ent.</u>, 1955, <u>48</u>, 638; (b) S. Abu-El-Haj, M.A.H. Fahmy, and T.R. Fukuto, <u>J. Agric. Food Chem.</u>, 1979, 27, 258.
- 28. $\underline{14}$: mp 69-70°C; ¹H nmr (CCl₄) & 3.8 (q, 2H, J = 9 Hz), 6.8 (s, 2H), 7.2 (m, 8H); ¹⁹F nmr (CCl₄, rel to CFCl₃) & 71.6 (t, ³J_{HF} = 8.6 Hz); ir (neat) v 3060, 1600, 1570, 1475, 1270, 1140 cm⁻¹; uv (95% EtOH) λ max (ϵ) 253.5 (21,500), 286 nm (6,700). Anal. calcd for C₁₆H₁₂NF₃: C, 69.81; H, 4.39; N, 5.09. Found: C, 69.87; H, 4.58; N, 5.29.
- 29. <u>16</u>: mp 60.5-62°C; ¹H nmr (CCl₄) δ 3.15 (s, 4H), 4.3 (q, 2H, J = 9 Hz), 7.0 (s, 8H); ¹⁹F nmr (CCl₄, rel to CFCl₃) δ 70.4 (t, ³J_{HF} = 8.6 Hz); ir (neat) 3060, 2950, 1590, 1490, 1445, 1280, 1240 cm⁻¹; uv (EtOH) λ max (ϵ) 248 nm (6,300). Anal. calcd for C₁₆H₁₄NF₃: C, 69.31; H, 5.09; N, 5.05. Found: C, 69.21; H, 4.97; N, 5.04.

Received, 25th October, 1983