SYNTHESIS OF THE C-11 OXYGENATED ERYTHRINA ALKALOIDS Maria Helena Sarragiotto, Paulo A. da Costa and Anita J. Marsaioli* Ínstituto de Química, Universidade Estadual de Campinas C.P. 6154, 13100-Campinas-SP, Brasil Abstract — Introduction of an oxygenated function at C-11 of the Erythrina alkaloid skeleton was obtained by treating erysovine with lead tetraacetate. Unfortunately simultaneous substitution of the C-3 OMe by -OAc has occurred and modifications as changing the reaction conditions and/or the phenolic compound to erysodine did not lead to successful results. While developing our phytochemical study on Erythrina mulungu we became aware that although much work has been devoted to the synthesis of Erythrina alkaloids, nothing has been mentioned on the C-11 oxygenated compounds of this type, 1. Our own efforts have been directed toward the introduction of an oxygenated function at the benzylic site of 2, which requires a highly regionelective reaction. This led us to lead tetraacetate oxidations (LTA) which have successfully been applied to phenolic tetrahydroisoquinoline derivatives by Umezawa et al². Thus erysovine 2a $(0.200 \text{ g})^3$ in acetic acid (5 ml) was treated with LTA (0.250 g) at 0° C for 0.5 h producing the p-quinol acetate $\underline{3}$ [IR (cm⁻¹): 1740 (OAc), 1680 (C=0); UV. $\lambda_{\rm max}^{\rm EtOH}$ 232 nm; 1 H MMR (δ CDCl₂): 2.13 (OCOMe), 3.37 (C-3 OMe), 3.72 (C-16 OMe), 6.62 and 6.80 (each 1H, H-14 and H-17)]. Crude p-quinol acetate $\underline{3}$ (0.100 g) in acetic anhydride (0.5 ml) was further treated with conc. $m H_2SO_4$ (0.06 ml) and $m Ac_2O$ (1 ml) at -30 $^{ m O}C$ for 15 min. Usual treatment of the reaction followed by 1c - $$R_1 = R_3 = R_4 = Ac$$; $R_2 = Me$ (3R, 11S) 1d - $$R_1 = R_3 = R_4 = Ac$$; $R_2 = Me$ (3S, 11S) 1e - $$R_2 = R_3 = R_4 = Me$$; $R_1 = Ac$ (3R, 11R) $$2a - R_1 = R_3 = Me; R_2 = H$$ 2d - $$R_1 = R_2 = Me$$; $R_3 = H$ $$2e - R_1 = R_3 = Me; R_2 = Ac$$ $$2f - R_1 = H;$$ $R_2 = R_3 = Me$ layer chromatography afforded <u>1a</u>, <u>1b</u>, <u>1c</u> and <u>1d</u> in 17, 13, 6 and 0.5% yield respectively, which showed analogous UV (λ_{max}^{EtOH} ca. 275 and 223 nm) and mass [m/z M⁺ 427, 266 (100%)] spectra, indicating a close relationship between these compounds. Formation of four diastereoisomers could be visualized taking into consideration that the introduction of the acetoxy group at C-11 would lead either to (R) C-11-0Ac or (S) C-11-0Ac and that the acidic treatment (Ac_20 -conc H_2SO_4) of the popular point acetate <u>3</u>, could attack the allylic methyl ether at C-3 affording either (R) C-3-0Ac or (S) C-3-0Ac. Therefore in order to obtain further evidence on the acetoxy substitution of the C-3-0Me, erysotrine <u>2b</u>, was treated with Ac_20 -conc. H_2SO_4 at -30° C to yield acetylerythravine <u>2c</u> as a major compound [δ_H (CDCl₃) 2.02 (OAc), 3.37 (OMe), 3.83 (OMe), 5.46-5.76 (m, w1/2 18 Hz, H-3) 5.83 (H-7), 6.03 (lower field arm of a doublet, H-1) 6.68 (dd, J=10 and 2 Hz H-2), 6.67 (s, H-17), 6.90 (s, H-14)] which on hydrolysis (HC1/ $H_20/80^{\circ}$ C) afforded erythravine <u>2d</u>, with identical spectral data to those of the natural product⁴. Structures <u>1a</u>, <u>1b</u> and <u>1c</u> were confirmed to be (3R, 11R) - 3,15-diacetyl-11-acetoxyerysoline, (3S, 11R) - 3,15-diacetyl-11-acetoxyerysoline and (3R, 11S) - 3,15-diacetyl-11-acetoxyerysoline respectively by inspection of their ¹H NMR spectra (Table 1). The assignments of H-2, H-3 and H-10 were confirmed by selective irradiation experiments and those of the acetoxy groups by comparison with acetylerythravine $\underline{2c}$, erythrascine $\underline{1e}^5$ and acetylerysovine $\underline{2e}$ [$\delta_{\text{H}}(\text{CDCl}_3)$ 2.35 (OAc)]. The absorption patterns of H-2, H-3 and H-10 (compound $\underline{1a}$, $\underline{1b}$ and $\underline{1c}$) in the ${}^{1}H$ NMR spectra were of diagnostic importance in our configurational analysis, when compared to the corresponding ones of $\underline{2c}$, $\underline{1e}$ and $\underline{2e}$. The minor compound $\underline{1d}$ was regarded as the fourth diastereoisomer (3S, 11S) 3,15-diacetyl-11-acetoxyerysoline. Facing these facts we came to the conclusion that although LTA oxidation of <u>2a</u> afforded the C-11 oxygenated Erythrina alkaloid, the isomerization at C-3 had to be overcome either by changing the reaction conditions or the phenolic compound. Thus p-quinol acetate $\underline{3}$ was treated with CF₃C00H and CF₃C00H(CF₃C0)₂0⁶ instead of H₂S0₄/Ac₂0 and in both cases we did not recuperate an 11-oxygenated Erythrina alkaloid. We were then left with the possibility of changing the phenolic compound. Based on the fact that LTA oxidation of 2-benzyl-6-hydroxy-7-methoxy-1,2,3,4-tetrahydroisoquinoline 4, gives the $\frac{\text{Table }1}{\text{Assignment of }^{1}\text{H NMR signals of the oxidation products of }\underline{2a}\text{ in CDCl}_{3}.$ | <u>1a</u> | H-14 | H-17 | H-2 | H-1 . | H-7 - H-11 | |-----------|----------------|-----------------|-------------------|--|--------------------| | | 7.06 | 6.89 | 6.60 | 5.92 | 5.84 - 5.74 | | | (s) | (s) | (dd, J = 10, 2.5) | (s) lower
field arm of
a doublet | (m) | | <u>1b</u> | 7.26 | 6.82 | 6.05 | 6.74 | H-7 - H-11 - H-1 | | | (s) | (s) | (dd,J = 10, 5) | (s) higher field
arm of doublet | 5.88 - 5.82
(m) | | <u>1c</u> | 7.02 | 6.82 | 6.55 | - | 5.72 - 6.18 | | | (s) | (s) | (dd, J = 10, 2) | | (m) | | <u>1a</u> | H-3 | H-10a | H-10e | 0Me | 0Ac | | | 5.70 - 5.40 | 3.23 | 3.58 | 3.80 | 2.28 (C-15) | | | (m, w1/2 = 18) | (dd, J = 15, 2) | (dd, J = 15, 4) | (s) | 2.10 (C-11) | | | | | | | 2.02 (C-3) | | <u>1b</u> | 5.62 - 5.40 | 3.26 | 3.62 | 3.78 | 2.26 (C-15) | | | (m, w1/2 = 10) | (dd, J = 15, 2) | (dd, J = 15, 4) | | 2.11 (C-11) | | | | | | | 1.90 (C-3) | | <u>1c</u> | 5.64 - 5.40 | 3.20 - 3.60 | 3.20 - 3.60 | 3,77 | 2.24 (C-15) | | | (m, w1/2 = 17) | (m) | (m) | (z) | 2.12 (C-11) | | | | | | | 2.01 (C-3) | corresponding 4-acetoxy derivatives $\underline{5}$, on a spontaneous rearrangement of the o-quinol acetate $\underline{6}^2$, we have submitted erysodine $\underline{2f}^3$ (0.162 g) an Erythrina alkaloid possessing an isoquinoline moiety similar to $\underline{4}$, to LTA oxidation (0.202 g) in $\mathrm{CH_2Cl_2}$ (5 ml) at $5^0\mathrm{C}$. Usual work up 2 led to the expected C-15 epimeric mixture of o-quinol acetates $\underline{7}$ [$^1\mathrm{H}$ NMR $\delta(\mathrm{CDCl_3})$ 2.08 (6H, OAc), 3.30 (OMe), 3.33 (OMe), 3.40 (OMe), 3.43 (OMe), 5.80-6.90 (H-1, H-2, H-7, H-14 and H-17)] which unfortunately decomposed prior to its rearrangement to the corresponding 11-acetoxy derivative $\underline{8}$. We are now looking for other reagents which could introduce an oxygenated function at C-11 of the Erythrina alkaloid (dienoid type), without isomerizing carbon-3. ## REFERENCES - 1. M. H. SARRAGIOTTO, H. LEITÃO FILHO and A.J. MARSAIOLI, Can. J. Chem., (1981) 59, 2771. - 2. H. HARA, O. HOSHINO and B. UMEZAWA, Heterocycles, (1981) 15, 907, and refs. cited therein. - 3. a) Isolated from the hydrolized crude methanolic extract of dried seed (250 g) of Erythrina speciosa. b) R.T. HARGREAVES, R.D. JOHNSON, D.S. MILLINGTON, M.H. MONDAL, W. BEAVES, L. BECKER, C. YOUNG and K.I. RINEHART, JR., J. of Nat. Prod., (1974) 37, 569, and refs. cited therein. - 4. D.S. MILLINGTON, D.H. STEINMAN and K.L. RINEHART JR., J. Am. Chem. Soc. (1974) 95, 1909. - 5. S. GHOSAL, A. CHAKRABARTI and R.S. SRIVASTAVA, Phytochemistry, (1972) 11, 2101. - 6. H. HARA, O. HOSHINO and B. UMEZAWA, Heterocycles, (1976) 5, 213. Received, 20th September, 1983