CYCLOADDITION REACTIONS OF 1,3-BENZOTHIAZINES IV. INTERMOLECULAR
1,3-DIPOLAR CYCLOADDITION OF 2H-1,3-BENZOTHIAZINES WITH NITRILIMINES

Lajos FODOR

Central Lab., County Hospital, H-570l Gyula, P.O.B. 46.

Mohamed-Sami EL-GHARIB, János SZABÓ^N, Gábor BERNÁTH

Inst. Pharm. Chem., Univ. Medical School, H-670l Szeged, P.O.B. 121.

Pál SOHÁR

Spectroscopic Dept. EGYT Pharm. Chem. Works, H-1475 Budapest, P.O.B.

100, Hungary

Abstract — Thermal [3+2] intermolecular cycloaddition of nitrilimines to 2H-1,3-benzothiazines (1, 2) gives new fused tricyclic ring systems (5, 6).

1,3-Dipolar cycloaddition is one of the most useful methods for the preparation of five-membered heterocycles. Numerous possibilities for variation are available by changing the structures of both the dipole and the dipolarophile. Nitrilimines are a long-known and thoroughly investigated class of 1,3-dipoles. Access to this group of dipoles can be achieved by (a) treatment of hydrazonyl halides with base², (b) thermal or photochemical decomposition of tetrazoles^{3,4}, (c) photolysis of sydnomes⁵, and (d) thermal elimination of carbon dioxide from 1,3,4-oxadiazolin-5-ones^{6,7}. Inter- and intramolecular cycloaddition of nitrilimines has been widely investigated and in many cases has led to the synthesis of a variety of interesting heterocyclic compounds, some of which would be tedious to synthesize by other methods⁸.

Following our studies of the cycloaddition reactions of 1,3-benzothiazines, we now report that the reactions of 6,7-dimethoxy-2 $\underline{\text{H}}$ -1,3-benzothiazine ($\underline{1}$) and its 4-methyl analogue ($\underline{2}$) with hydrazonyl halides ($\underline{3}\underline{a}$ - \underline{h}) $\underline{10}$ -13 give the new angularly--condensed triazolobenzothiazines ($\underline{5}\underline{a}$ - \underline{h}). The structures and purity of the new compounds were confirmed by IR, $\underline{1}$ H and $\underline{1}$ 3C NMR measurements.

The most important IR data are as follows: Characteristic nitro bands of compounds 5b, c and 6b, c: 1515-1480, 1325-1295 and 840-825 cm⁻¹, respectively. Ester bands of compounds 5e, f, g and 6e, f, g: 1700-1715 (\sqrt{V} C=0) and 1270-1245 and 1160-1135 cm⁻¹, respectively (\sqrt{V} C=0). \sqrt{V} NH and amide-I bands (5h, 6h) at about 3370 and

a: $R = R^{\circ} = Ph$; X = Clb: $R = 4-0_2NC_6H_4$; $R^{\circ} = Ph$; X = Brc: $R = 4-0_2NC_6H_4$; $R^{\circ} = 4-ClC_6H_4$; X = Brd: R = Ph; $R^{\circ} = 4-ClC_6H_4$; X = Clh: R = Ph; $R^{\circ} = CO_2Et$; X = Clh: R = Ph; $R^{\circ} = CO_2Et$; X = Cl

3375 cm $^{-1}$ and 1685 and 1680 cm $^{-1}$, respectively. Naturally, all the spectra contain the bands characteristic of methoxy and phenyl and/or <u>para</u>-disubstituted phenyl groups.

The NMR data are discussed in detail elsewhere 14, where we also report the conformational analyses of these compounds. The most important 1 NMR characteristics: The non-equivalent protons of the 4-methylene group give an AB multiplet, with chemical shifts at 4.05-4.80 and 4.40-5.80 ppm, respectively, and a coupling constants of 11.5-13.5 Hz. The two singlets methoxy of 3-3H intensity are in the intervals 3.74-3.97 and 3.23-3.27 (6e-h) or 3.57-3.89 ppm (5e-h, 6e-h). The H-10 signal of compounds 5e-h appears at 6.11-6.54 ppm, and the corresponding 10-methyl singlet (3H) of compounds 6e-h at 1.82-2.12 ppm. The H-6 and H-9 singlets can be found in the intervals 6.49-6.89 and 5.93-6.07 (6e-h) or 6.77-7.30 ppm (5e-h, 6e-h).

6e-d). The triplet and quartet (3 0.7 Hz) of the carbethoxy group in compounds 5e.f.g and 6e.f.g are identifiable at 1.36-1.39 and 4.35-4.38 ppm. The multiplets of the aromatic hydrogens are identifiable in all cases with the expected multiplicity and intensity.

The strong shielding of H-9 and the C-8 methoxy group in compounds 69-h led us to the conclusion of a different conformation for the latter compounds relative to the others. From temperature-dependence of the ¹H NMR spectra, we concluded that all compounds unsubstituted on C-10 (58-h) and the 3-aryl-substituted 10-methyl.

PHYSICAL AND ANALYTICAL DATA ON COMPOUNDS 5g-h AND 6g-h

Com-	Yield	M_p_	Formula	Anı	Analysis/% Calcd_/Found			
pound	%	°c	M_ W_	C	Н	N	s	
58	89	170-171	^C 23 ^H 21 ^N 3 ^O 2 ^{\$} 403_49	68_46	5,25	10,41	7,95	
				68_50	5_31	10,36	7.79	
<u>5</u> b	91	203-205	C ₂₃ H ₂₀ N ₄ O ₄ S	61.59	4, 50	12.49	7,15	
			448,49	61.42	4.39	12_56	7.23	
<u> 5</u> 6	90	214-216	c ₂₃ H ₁₉ C1N ₄ O ₄ S	57_20	3_97	11_60	6_63	
		•	482_93	57.31	4_04	11,49	6,52	
5설	91	1 87- 189	с ₂₃ н ₂₀ с1 n ₃ 0 ₂ s	63_08	4_60		-	
			437_93	63_46	4. 90	9.71	-	
<u>59</u>	85	139-140	C ₂₀ H ₂₁ N ₃ O ₄ S	60.13	5.30	10_52	8.03	
			399,46	60,24	5_38	10,64	8,11	
<u>5£</u>	86	180-181	C ₂₀ H ₂₀ C1N ₃ O ₄ S	55_36	465	9,68	7.39	
_		1-0 1-1	433_90	55, 47	4.72	9,67	7_43	
59	78	150-151	C ₂₁ H ₂₃ N ₃ O ₄ S	61,00	5.61		7.76	
FL	07	107 104	413_48	60.91	5.76		7.89	
5 <u>h</u>	87	183-184	C ₂₄ H ₂₂ N ₄ O ₃ S 446 ₋ 52	64 . 55 64 . 46	4. 97 5. 01	12,55	7.18	
6.	82	184-185		69 . 0 4	5.55	12_31	7_21 7_69	
<u>ga</u>	02	104-103	C ₂₄ H ₂₃ N ₃ O ₂ S 417,51	68,92	5,63	10_06 10_06	7.75	
<u>6b</u>	92	179-181	C ₂₄ H ₂₂ N ₄ O ₄ S	62.32	4_80	12,11	6_93	
õõ	<u>-</u>	2.0 -02	462_54	62.19	4.86		6.78	
<u>6</u> 2	94	222-224	C24H21CIN4O4S	58.00	4,26		6.45	
50			496,96	58.07	4.34	11.32	6.37	
6설	85	180-181	C ₂₄ H ₂₂ C1N ₃ O ₂ S	63,78	4.91	9_30	_	
			451.96	64_00	5_25	9.55	_	
<u>6e</u>	84	134-135	C ₂₁ H ₂₃ N ₃ O ₄ S 413_48	61.00	5_61	10,16	7.76	
				60, 87	5, 69	10,24	7,86	
<u>6f</u>	88	135-136	C ₂₁ H ₂₂ C1N ₃ O ₄ S 447_93	56.31	4, 95	9.38	7.16	
				56_45	5_04	9.47	7.24	
52	86	129-131	с ₂₂ н ₂₅ N ₃ 0 ₄ s	61.80	5, 89	9_83	7_50	
			427_51	61.92	5, 97	9_88	7.41	
<u>6h</u>	90	169-170	C ₂₅ H ₂₄ N ₄ O ₃ S	65,20	5, 25	12,17	6,96	
			460_54	65_39	5 , 36	12,29	6.78	

analogues (§g-d) occur in a rigid conformation. The 10-methyl-3-carbethoxy derivatives are conformationally more flexible systems, where H-9 and the 8-methoxy substituent lie close to the 1-aryl ring in the preferred conformer. Consequently, the heterorings must be <u>cis</u>-anellated. By taking up this more strained structure the molecules avoid the steric hindrance of the 10-methyl and 1-aryl groups. This conformation is stabilized probably by a hydrogen-bond. ¹³C NMR spectra gave additional proof of the structures and postulated conformations. ¹⁴

EXPERIMENTAL

The IR spectra were run on a Specord 75 (JENA) grating spectrometer, in KBr pellets. 1 H NMR spectra were recorded at room temperature in CDCl $_3$ solution at 250 MHz, on a BRUKER WM-250 FT-spectrometer equipped with a superconducting magnet, using TMS as internal standard. Sweep width: 5 kHz, pulse width: 1 μ s (flip engle $\sim 20^{\circ}$), acquisition time: 1.64 s, number of scans: 8, computer memory 16 K, digital resolution: 0.61 Hz/point.

General procedure for synthesis of 5a-h, 6a-h: 1 or 2 (0.01 mol) was dissolved in benzene (50 ml) and 0.01 mol of 3 was added. The mixture was refluxed, and a solution of Et_3N (0.01 mol) in 30 ml benzene was added dropwise, with stirring, during 1 h. The crystalline Et_3N . HCl was removed by filtration, the benzene solution was evaporated and the residue was then crystallized from EtOH to obtain crystals (cf. Table).

REFERENCES

- 1. Part III: see Ref. 14. At the same time this paper is regarded as Part 55 of the series "Saturated heterocycles". Part 54.: see Ref. 14.
- 2. R. Huisgen, M. Seidel, G. Wallbillich and H. Knupfer, Tetrahedron, 1962, 17, 3.
- 3. J. S. Clover, A. Eckell, R. Huisgen and R. Sustmann, Chem. Ber., 1967, 100, 60.
- 4. P. Scheiner and W. M. Litchman, J. Chem. Soc. Chem. Commun., 1972, 781.
- 5. M. Marky, H. Meier, A. Wunderli, H. Heimgartner, H. Schmid and H. J. Hansen, Helv. Chim. Acta, 1978, 61, 1477.
- 6. C. Wentrup, A. Damerius and W. Richen, J. Org. Chem., 1978, 43, 2037.
- 7_ A_ Padwa, T_ Caruso and S_ Nahm, J_ Org_ Chem_, 1980, 45, 4065_
- 8. A. Padwa, Angew. Chem. Int. Ed. Engl., 1976, 15, 123.
- 9. J. Szabó, L. Fodor, I. Varga, E. Vinkler and P. Sohár, Acta Chim. Acad. Sci. Hung., 1977, 92, 317.
- 10. G. Farvel, Compt. rend., 1902, 134, 1312.
- 11. C. Bulow and P. Neber, Chem. Ber., 1912, 45, 3732.
- 12. A. F. Hegarty and F. L. Scott, J. Chem. Soc., 1966, 672.
- 13. C. Bulow and E. King, Liebigs Ann. Chem., 1924, 439, 211.
- 14. P. Sohér, L. Fodor, J. Szabó and G. Bernáth, submitted to Org. Magn. Resonance.

Received, 31st October, 1983