A BASE-CATALYZED STEREOSPECIFIC EPOXIDATION WITH α -AZOHYDRO-PEROXIDES

Takahiro Tezuka* and Masaaki Iwaki Department of Chemistry, The University of Tsukuba, Sakuramura, Ibaraki 305, Japan

<u>Abstract</u> — A new stereospecific epoxidation with the α -azohydroperoxide (<u>1</u>) is reported. α -Azohydroperoxides (<u>1a</u> - <u>1d</u>) epoxidized cis- and trans-stilbenes stereospecifically in the reaction catalyzed by pyridine or sodium hydroxide. Similarly, cyclohexene, norbornylene, and cis- β -methylstyrene all were epoxidized by <u>1a</u> - <u>1d</u> in good to high yields in basic media. Reactive species of the epoxidation are discussed.

The base-catalyzed epoxidation by hydroperoxides or peracids is of interest from mechanistic and synthetic points of view.¹⁻³ Recently, we have reported that in the reaction catalyzed by pyridine, the α -azohydroperoxide (<u>la</u>) generates dioxirane^{4,5} or carbonyl oxide^{6,7} (<u>2a</u> or <u>3a</u>)⁸ which epoxidizes cyclohexene and tetra-methylethylene. However, the yield of epoxide is low. Being interested in the base-catalyzed epoxidation with hydroperoxides, we looked for the possibility of the α -azohydroperoxides (<u>1</u>) as an epoxidation reagent. We found that <u>1</u> epoxidizes olefin stereospecifically in basic media, and a high yield of epoxide is obtained under a highly-diluted condition.

When a benzene or dioxane solution of $1 (10^{-2} - 10^{-4} \text{ M})$ and olefin (ca. 10 times) was stirred at room temperature or heated under reflux in the presence of pyridine or sodium hydroxide (ca. 5 times of <u>1</u>), epoxide was formed in good to high yields (see Table 1).

The table indicates that the yield of epoxide depends on the concentration of $\underline{1}$ in the reactant. The best yield of epoxide was obtained when the reaction was carried out in a 10^{-4} M solution of $\underline{1}$. In general, the lower the concentration of the azohydroperoxide ($\underline{1}$), the higher the yield of epoxide. An example

-725-

Table 1. Yield of epoxide

·	Azohydroper-			Epoxide
Olefin	oxide 1 (M)	Base	Yield	(%) ^a
Ph Ph	<u>la</u> (10^{-4})	pyridine ^b	48	<u></u>
	<u>1b</u> (10 ⁻⁴)	NaOH ^b	73	Ph
	<u>$1c$</u> (10^{-4})	NaOH ^b	76	
	<u>1d</u> (10^{-4})	NaOH	84	Pn
	<u>$1b$</u> (10 ⁻⁴)	NaOH ^b	55	
Ph Ph	<u>$1b$</u> (10 ⁻³)	NaOH ^b	25	ρ.
	<u>$1b$</u> (10^{-2})	NaOH	8	A
	<u>$1c$</u> (10^{-4})	NaOH ^b	51	Ph Ph
	<u>ld</u> (10 ⁻⁴)	NaOH	58	
Ph Me	<u>la</u> (10^{-4})	pyridine ^b	59	0
	<u>1b</u> (10^{-4})	pyridine ^C	79	Å
	<u>$1b$</u> (10 ⁻⁴)	NaOH ^b	71	Ph Me
\bigcirc	<u>la</u> (10^{-3})	pyridine ^b	35	$\overline{\frown}_{0}$
	$\underline{1b}$ (10 ⁻⁴)	NaOHb	77	
Λ	<u>la</u> (10^{-3})	pyridine ^b	23	Λ
a)	<u>$1b$</u> (10^{-4})	NaOH ^b	62	$\Box \mathcal{F}^{\circ}$

ł

a: yield based on $\underline{1}$ and determined by GLC; b: stirred at room temperature; c: heated under reflux

	a: R_1 = Ph; R_2 = H; Ar = - Dr Br
$R_2 - C - N = N - Ar$	b: $R_1 = Ph$; $R_2 = Me$; $Ar = -O - Br$
² I ООН	c: $R_1 = R_2 = Me$; $Ar = -O - Br_1$
<u>1</u>	d: $R_1 = R_2 = -(CH_2)_5 -; Ar = -(O)$

is shown by the reaction of cis-stilbene with <u>lb</u> in Table 1. The epoxidation is highly stereospecific. Both cis-stilbene and cis- β -methylstyrene gave the corresponding cis-epoxides stereospecifically. Phenyl and alkyl substituted olefins gave epoxides (Table 1). On the other hand, electron-deficient olefins such as mesityl oxide and cinnamic acid did not give epoxides. It is to be noted that sodium hydroxide is effective in the epoxidation with <u>lb</u> - <u>ld</u>, while

it is not a good catalyst for <u>la</u>. This is probably due to the fact that the base-catalyzed dehydration of <u>la</u>, which gives rise to N-(4-bromophenyl)-N'-ben-zoyldiazene, occurs in competition with the epoxidation.⁸

Nevertheless, the azohydroperoxide $(\underline{1})$ can be used as an epoxidizing reagent in anhydrous organic media with pyridine as a base. This has some advantage when compared with the base-catalyzed epoxidation of acid-sensitive compounds by hydroperoxides or peracids in aqueous solution.¹⁻³ The applicability of this reaction is under investigation.

The mechanism of this novel stereospecific epoxidation is of interest. The epoxidation by <u>1</u> occurred only <u>in basic solution</u>, and does not proceed through the direct oxygen transfer⁹⁻¹¹ from the hydroperoxides to olefin as reported previously.⁸ The stereospecificity of the reaction rules out the stepwise mechanism intervening a carbanion of the type shown by $4.^{1,2}$

On the other hand, the mechanism involving dioxirane (2) as a reactive intermediate as proposed previously,⁸ well accounts for the stereospecific epoxidation with <u>1</u> in basic media. However, it is worth noting that an oxenoid such as <u>5</u> also accounts for the epoxidation. <u>5</u> is derived from the peroxy anion of <u>1</u> by the Criegee-type rearrangement^{12,13} of the azo group to the α -oxygen and the simultaneous attack of the β -oxygen at the aliphatic carbon (see <u>6</u>).¹⁴ Alternatively, the elimination of the azo group in <u>5</u> (or its anion) gives dioxirane (<u>2</u>) which epoxidizes olefin. We are investigating further the mechanism of this epoxidation in comparison with that of the caroate-acetone system in which dioxirane is proposed as a reactive oxenoid.⁵ Details of our works will appear elsewhere. REFERENCES

- G. B. Payne, <u>J. Org. Chem.</u>, 1960, <u>20</u>, 275; K. Maruyama, R. Goto, and S. Kitamura, Nippon Kagaku Zasshi, 1960, <u>81</u>, 1780.
- H. O. House and R. S. Ro, <u>J. Am. Chem. Soc.</u>, 1958, <u>80</u>, 2428; N. C. Yang and R. A. Finnegan, <u>ibid.</u>, 1958, <u>80</u>, 5845; R. W. Gleason and J. T. Snow, J. Org. <u>Chem.</u>, 1969, <u>34</u>, 1963.
- 3. V. G. Dryuk, Tetrahedron, 1976, 32, 2855, and references cited therein.
- R. D. Suenram and F. J. Lovas, <u>J. Am. Chem. Soc.</u>, 1978, <u>100</u>, 5117; H.
 Mimoun, Angew. Chem., Int. Ed. Engl., 1982, 21, 734.
- J. O. Edwards, R. H. Pater, R. Curci, and F. D. Furia, <u>Photochem.</u> <u>Photobiol.</u>, 1979, <u>30</u>, 63; R. Curci, M. Fiorentino, L. Troisi, J. O. Edwards, and R. H. Pater, <u>J. Org. Chem.</u>, 1980, <u>45</u>, 4758.
- 6. R. Criegee, Angew. Chem., Int. Ed. Engl., 1975, 14, 745.
- 7. R. E. Keay and G. A. Hamilton, J. Am. Chem. Soc., 1976, <u>98</u>, 6578; T. A. Hinrichs, V. Ramachandran, and R. W. Murray, <u>ibid.</u>, 1979, <u>101</u>, 1282; W. Adam and A. Rodriguez, <u>ibid.</u>, 1980, <u>102</u>, 404.
- 8. T. Tezuka and M. Iwaki, Tetrahedron Lett., 1983, 24, 3109.
- 9. A. L. Baumstark and P. C. Vasquez, Tetrahedron Lett., 1983, 24, 123.
- 10. J. Rebek, Jr. and R. McCready, J. Am. Chem. Soc., 1980, 102, 5602.
- 11. R. P. Heggs and B. Ganem, <u>J. Am. Chem. Soc.</u>, 1979, <u>101</u>, 2484.
- R. Criegee, <u>Ber.</u>, 1944, <u>77</u>, 722; M. Nakagawa, H. Watanabe, S. Kodato, H. Okajima, T. Hino, J. L. Flippen, and B. Witkop, <u>Proc. Natl. Acad. Sci.</u> U.S.A., 1977, 74, 4730.
- 13. S. Muto and T. C. Bruice, J. Am. Chem. Soc., 1980, 102, 7379.
- 14. T. Tezuka, M. Iwaki, and Y. Haga, Chem. Commun., in press.

Received, 31st December, 1983