STEREOCHEMICAL ASPECTS OF 1,3-DIPOLAR CYCLOADDITION OF BENZ[de]ISOQUINOLINIUM-1-IDE AND NAPHTHO[1,8-cd]THIOPYRAN

Masazumi Ikeda*

Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 607, Japan Yasumitsu Tamura and Masafumi Yamagishi Faculty of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565, Japan Yoshinobu Goto,* Tokihiro Niiya, and Kunihiro Sumoto Faculty of Pharmaceutical Sciences, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka 814-01, Japan

<u>Abstract</u> — In contrast to naphtho[1,8-<u>cd</u>]thiopyran which undergoes 1,3-dipolar cycloaddition with maleimides to give exclusively or predominantly <u>exo</u>-adducts, 2-methylbenz[<u>de</u>]isoquinolinium-1-ide has been shown to react with maleimides to give exclusively <u>endo</u>-adducts. These results are rationalized in terms of frontier orbital theory.

2-Methylbenz[<u>de</u>]isoquinolinium-1-ide (1) (R=Me) was found to undergo 1,3-dipolar cycloaddition with maleimides to give exclusively <u>endo</u>-adducts (Table 1).^{1,2} In contrast, naphtho[1,8-<u>cd</u>]thiopyran (5) has been known to give exclusively or predominantly <u>exo</u>-adducts when allowed to react with maleimides (Table 2).^{1,3} We have now attempted to rationalize these conflicting results using frontier orbital theory.

Before discussing the results of calculations, the reaction of (1) (R=Me) with dimethyl maleate and dimethyl fumarate should be mentioned. Thus, treatment of 2,3-dihydro-2-methyl-1<u>H</u>-benz[<u>de</u>]isoquinoline <u>N</u>-oxide¹ with acetic anhydride and triethylamine in the presence of dimethyl maleate at -10°C gave the <u>endo</u>- $(2d)^4$ and <u>exo</u>-adducts $(3d)^4$ in 6 and 52% yields, respectively. A similar reaction of (<u>1</u>) (R=Me) with dimethyl fumarate afforded the single adduct (<u>4</u>)⁴ in 83% yield. The structures of these adducts can be readily assigned on the basis of the ¹H-nmr spectra. The fact that the stereospecific <u>cis</u>-1,2-cycloaddition was observed

- 981 -

Table 1. Yield for cycloaddition of (1) (R=Me) to various dipolarophiles

	dipolarophile	R' R'	isolated (2)	yield (%) (3)	reference
a	<u>N</u> -methylmaleimide	-NMe-	80	0	1
b	<u>N</u> -phenylmaleimíde	-NPh-	59	0	1
с	maleic anhydride	-0-	65	0	unpublished ⁵
đ	dimethyl maleate	OMe OMe	6	52*	this work

* GLC analysis showed that the product ratio of (2d) to (3d) is 1:6.

Table 2. Yield for cycloaddition of (5) to maleimides

	dipolarophile	R	isolated (6)	yield (%) (7)	reference
a	<u>N</u> -methylmaleimide	Me	13	52	1
ь	<u>N</u> -phenylmaleimide	Ph	0	55	3

in these reactions, indicates that the reaction takes place in a concerted manner. Frontier orbitals of (1)(R=H), (5), and maleimide (R=H) were calculated by using <u>ab</u> <u>initio</u> procedures at the STO-3G level.⁶ The computer program employed is IMSPACK which contains Gaussian 70.⁷ The results, summarized in Fig. 1, clearly indicate that both the reactions are dipole-HOMO-controlled ones.⁸

Fig. 1. Frontier energy levels (a.u.) and orbital coefficients for (1) (R=H), (5), and maleimide (R=H)

The secondary orbital interactions in the transition states are shown in Fig. 2. The interactions between the lobes on C-3a and C-9a of the dipoles and the carbonyl carbons of maleimide are antibonding (wavy lines). However, the coefficients of the HOMO of (1) at C-3a and C-9a are relatively small and the bonding interactions between the lobes of C-4 and C-9 of the dipoles and the carbonyl oxygens of

Fig. 2. The secondary orbital interactions in the transition states

maleimide are dominant (Fig. 2a) and lead to a preference for <u>endo</u> addition. In sharp contrast, relatively large HOMO coefficients on C-3a and C-9a in (5) make the <u>endo</u> transition state (Fig. 2b) disfavorable. In addition, the <u>exo</u> transition state (Fig. 2c) is stabilized by the favorable interaction between the d_{zx} component of the sulfur and the carbonyl carbons of maleimide. The remaining problem to be accounted for is why the reaction of (1) (R=Me) with dimethyl maleate gave the <u>exo</u>-adduct (3d) as the major product.⁹ One possible interpretation is that the molecule of dimethyl maleate is rather flexible compared to maleimides and maleic anhydride, so that the secondary interactions in the <u>endo</u> transition state are expected to be less important and the steric repulsion between the naphthalene ring and the ester groups may become significant. A similar <u>exo</u>-selectivity of dimethyl maleate has been reported with some six-membered heteroaromatic betaines [e.g., (8)¹⁰ and (2)¹¹].

REFERENCES AND NOTES

- M. Ikeda, Y. Miki, S. Kaita, Y. Nishikawa, and Y. Tamura, <u>J. Chem. Soc. Perkin</u> <u>1</u>, 1977, 44.
- 2. A. C. Oehlschlager, A. S. Yim, and M. H. Akhtar, Can. J. Chem., 1978, 56, 273.
- M. P. Cava, N. M. Pollack, and D. A. Repella, <u>J. Am. Chem. Soc</u>., 1967, 89, 3640; R. H. Schlessinger and I. S. Poticello, <u>ibid</u>., 1967, 89, 3641.
- 4. The adduct (2d), mp 140-142°C; nmr (CDCl₃) δ 2.16 (s,3H, NCH₃), 3.20 (s, 6H, 2xOCH₃), 3.90 (m, 2H, 8- amd 9-H), 4.42 (m, 2H, .7- and 10-H), 7.1-7.7 (m, 6H, arom. H); the adduct (3d), mp 135-136°C; nmr (CDCl₃) δ 2.18 (s, 3H, NCH₃), 3.26 (s, 2H, 8- and 9-H), 3.72 (s, 6H, 2xOCH₃), 4.57 (s, 2H, 7- and 10-H), 7.1-7.75 (m, 6H, arom. H); the adduct (4), mp 110-111°C; nmr (CDCl₃) δ 2.14 (s, 3H, NCH₃), 3.40 (s, 3H, endo-CO₂CH₃), 3.46 (d, 1H, <u>J</u>=6 Hz, 9-H), 3.75 (s, 3H, <u>exo-CO₂CH₃), 4.12 (bt, 1H, 8-H), 4.50 (d, 1H, <u>J</u>=7 Hz, 7-H), 4.55 (s, 1H, 10H), 7.0-7.75 (m, 6H, arom. H).
 </u>
- 5. The adduct (2c), mp 154-155°C; nmr (CDCl₃) δ 2.20 (s, 3H, NCH₃), 4.19 (m, 2H,

8- and 9-H), 4.57 (m, 2H, 7- and 10-H), 7.15-7.8 (m, 6H, arom. H).

(a) W. J. Hehre, R. F. Stewart, and J. A. Pople, <u>J. Chem. Phys.</u>, 1969, <u>51</u>, 2657;
 (b) Y. Sakai, H. Tatewaki, and S. Huzinaga, <u>J. Comput. Chem.</u>, 1981, <u>2</u>, 108;
 (c) V. Kral, Z. Arnold, and Z. Havlas, <u>Collect. Czech. Chem. Commun</u>., 1981, <u>46</u>, 883.

The molecular geometries of $(\frac{1}{2})$ (R=H), $(\frac{5}{2})$, and maleimide (R=H) were taken from appropriate references [R. E. Marsh, E. Ubell, and H. E. Wilcox, <u>Acta</u> <u>Cryst.</u>, 1962, <u>15</u>, 35; J. A. Pople and D. L. Beveridge, "Approximate Molecular Orbital Theory," McGraw-Hill, New York, N. Y., 1970]. A value of 1.55 Å for the C-S bond length in (<u>5</u>) was used ["Tables of International Distances," ed. by L. E. Sutton, The Chemical Society London, London, 1958, Supplement 1965]. The calculations were performed on a FACOM M-200 computer at the Computation Center of Fukuoka University.

- K. Morokuma, S. Kato, K. Kitaura, I. Ohmine, S. Sakai, S. Obara, IMS Computer Center Program Library, The Institute for Molecular Science, 1980, Program No. 0356.
- 8. K. N. Houk, Acc. Chem. Res., 1975, 8, 361.
- 9. It has been reported that the reaction of (1) (R=Ph) with dimethyl maleate gave the <u>endo-</u> and <u>exo-</u>adducts in a ratio of <u>ca</u>. 70:30.² The <u>endo-</u>selectivity was considerably lowered.
- 10. J. W. Lown and K. Matsumoto, Can. J. Chem., 1971, 49, 3443.
- 11. N. Dennis, B. Ibrahim, and A. R. Katritzky, <u>J. Chem. Soc. Perkin Trans 1</u>, 1976, 2307.

Received, 8th July, 1983