SYNTHESIS OF 2-(4,5-DIHYDROFURYL)- AND 2-(TETRAHYDROFURYL)-DIMETHYLHYDROSILANES. REARRANGEMENT OF 2-(TETRAHYDROFURYL)-DIMETHYLHYDROSILANE WITH RING EXPANSION

Edmunds Lukevics*, Vladimir Gevorgyan, Yuri Goldberg, Juris Popelis, Maris Gavars, Alexander Gaukhman, Mariya Shimanska
Institute of Organic Synthesis, Academy of Sciences
of the Latvian SSR, 226006 Riga, USSR

Abstract - 2-(4,5-Dihydrofuryl)- and 2-(tetrahydrofuryl)dimethylhydrosilanes (I and II) have been synthesized. The latter rearranges easily and quantitatively to 1-oxa-2-sila-2,2-dimethylcyclohexane in the presence of palladium catalyst. The possibility of hydrosilylation of alkenes and alkynes by I and II has been demonstrated.

2-(4,5-Dihydrofuryl)- and 2-(tetrahydrofuryl)dimethylhydrosilanes have not been described in literature before. However, they may be useful for introduction of di- and tetrahydrofurylsilyl groups into unsaturated compounds by the hydrosilylation.

The 2-(4,5-dihydrofuryl)dimethylhydrosilane (I) has been prepared by metallation of 2,3-dihydrofurane with n-BuLi in THF at -30°C and subsequent reaction of obtained dihydrofuryllithium with dimethylchlorosilane at -45°C. The yield of I was 50%, bp 133.5°C/760 mm Hg, n_D^{20} = 1.4495, IR spectrum (cm⁻¹): 1600 ($\sqrt[3]{C=C}$), 2130 ($\sqrt[3]{Si-H}$), for ¹H NMR and mass-spectral data of I see Table 1. Liquid-phase heterogeneous hydrogenation of hydrosilane I (0,1 M pentane solution) gave quantitative yield of 2-(tetrahydrofuryl)dimethylhydrosilane (II) (bp 135°C/760 mm Hg, n_D^{20} = 1.4362, $\sqrt[3]{Si-H}$ 2120 cm⁻¹) under mild conditions (20°C, 1 atm. H₂, catalyst 5 wt.% Pd/Al₂O₃). The structure of II has been confirmed by ¹H NMR and mass-spectrum (Table 1) and also by the subsequent methanolysis (25°C, 10 min) and methylation (MeMgJ/ether) leading to 2-(tetrahydrofuryl)trimethylsilane (IV) (Table 1) identical with the product obtained from the hydrogenation of 2-(4,5-dihydrofuryl)trimethylsilane ¹. However, quite unexpectedly after the total conversion of I into II the latter

under hydrogenation conditions turns out to be converted easily and quantitati-

vely into previously described 1-oxa-2-sila-2,2-dimethylcyclohexane (V) 3 .

Table 1

Compound	¹ H NMR (90 MHz, CDC1 ₃), 6,ppm;J,Hz	MS (70 eV) m/e (rel.intensity, %)
SiHMe ₂	0.22(d,6H,J=3.6, SiMe ₂), 2.61 (dt,2H,J ₁ =9.0,J ₂ =2.6,4-CH ₂), 4.06(m,1H,SiH), 4.30(t,2H, J=9.0, 5-CH ₂), 5.29(t,1H, J=2.6, 3-CH)	128(M ⁺ ,100), 113(96), 111(77), 99(14), 98(26), 85(33), 83(62), 72(20), 59(85)
SiHMe ₂	0.17(d,6H,J=4.4,SiMe ₂), 1.86(m,4H, 3,4-CH ₂), 3.33(m, 1H,2-CH), 3.79(m,3H,5-CH ₂ , SiH)	102(M ⁺ -28,100), 101(28), 87(94), 85(11), 75(16), 72(10), 71(26), 61(16), 59(53), 58(16)
SiDMe ₂	0.07(m,6H,J _{H-D} =0.5,SiMe ₂), 1.77(m,4H, 3,4-CH ₂), 3.19(m, 1H,2-CH), 3.56(m,2H,5-CH ₂)	103(M ⁺ -28,100), 102(18), 101(14), 88(90), 87(34), 86(12), 75(16), 71(31), 62(15), 61(13), 60(55), 59(29), 58(21)
Si(OMe)Me	0.15(s,3H,SiMe), 0.17(s,3H, SiMe), 1.86(m,4H, 3,4-CH ₂), 3.21(m,1H,2-CH), 3.50(s,3H, OMe), 3.75(m,2H,5-CH ₂)	132(M ⁺ -28,11), 117(100), 89(53), 59(22)
SiMe ₃	0.06(s,9H,SiMe ₃), 1.85(m,4H, 3,4-CH ₂), 3.23(m,1H,2-CH), 3.75(m,2H,5-CH ₂)	129(M ⁺ -15,2), 116(38), 101(100), 73(62), 59(36)
D Me	0.07(s,6H,SiMe ₂), 0.58(m,1H, 3-CHD), 1.53(m,2H,4-CH ₂), 1.76(m,2H,5-CH ₂), 3.79(m,2H, 6-CH ₂)	131(M ⁺ ,9), 117(30), 116(100), 115(65), 113(15), 88(14), 87(71), 75(10), 59(10)

Moreover, it has been shown that II quantitatively is converted into V under the same conditions in the absence of hydrogen. We should stress that the formation of V from II does not take place until the starting hydrosilane I presents in the reaction mixture. It indicates the strong interaction between I and the catalyst thanks to which the preparative synthesis of the hydrosilane II becomes possible. To elucidate the mechanism of the rearrangement of II into V deuteroanalogue (II-d) of the hydrosilane II has been synthesized by the reduction of III using LiAlD₄. In the presence of the catalyst Pd/Al₂O₃ II-d rearranges into corresponding deuteroanalogue of V(V-d) containing the deuterium atom in the 3rd position of the ring. Thus, the rearrangement II-+V proceeds evi-

dently through the hydride ion detachment stage by palladium catalyst from the hydrosilane II molecule with subsequent C-O bond cleavage and ring expansion according to the following scheme:

III
$$\frac{\text{LiAlD}_4}{\text{O}}$$
 $\frac{\text{SiMe}_2}{\text{D}}$ $\frac{\text{Pd}}{\text{O}}$ $\frac{\text{SiMe}_2}{\text{Ne}}$ $\frac{\text{Pd}}{\text{O}}$ $\frac{\text{SiMe}_2}{\text{Ne}}$ $\frac{\text{D}}{\text{Pd}}$ $\frac{\text{D}}{\text{Ne}}$ $\frac{\text{Me}}{\text{Me}}$ $\frac{\text{D}}{\text{V-d}}$

Table 2

Hydro- Alkene silane or alkyne	Hydrosilylation products (yield,%)	¹ н NMR (б,ррт; J,Hz)	MS, m/e (rel.intensity, %)
I PhCH=CH ₂	Me Me O SiCH ₂ CH ₂ Ph (73)	0.15(S,6H,SiMe ₂), 1.01(m,2H,a-CH ₂), 2.58(dt,J ₁ =9.0,J ₂ = 2.6,2H,4-CH ₂),2.68 (m,2H,b-CH ₂),4.28 (t,J=9.0,2H,5-CH ₂), 5.22(t,J=2.6,1H, 3-CH),7.23(m,5H,Ph)	232(M ⁺ ,10), 204(23), 147(13), 135(11), 129(13), 128(100), 114(11), 113(99), 98(16), 97(42), 75(13), 72(24), 69(11), 59(29)
II PhCH=CH ₂	Me Me SiCH ₂ CH ₂ Ph (77)	0.04(S,3H,SiMe), 0.06(S,3H,SiMe), 0.96(m,2H,a-CH ₂), 1.84(m,4H,3.4-CH ₂), 2.69(m,2H,b-CH ₂), 3.26(m,1H,2-CH), 3.73(m,2H,5-CH ₂), 7.23(m,5H,Ph)	234(M ⁺ ,0.4), 206(27), 164(10), 163(49), 162(100), 147(43), 135(61), 102(19), 101(48), 75(11), 59(77)
I PhC≡CH	(77)	3-CH), 6.45(d,1H, J=19.1,a-H),7.01(d, 1H,J=19.1,b-H),7.2- 7.5(m,5H,Ph)	230(M ⁺ ,40), 215(22), 201(28), 187(23), 185(61), 155(21), 145(100), 128(29), 102(20), 89(66), 75(31), 59(77)
	Me Me C-Ph CH ₂ (9)	0.29(S,6H,SiMe ₂), 2.60(dt,J ₁ =9.0,J ₂ = 2.6,2H,4-CH ₂),4.31 (t,J=9.0,2H,5-CH ₂), 5.28(t,J=2.6,1H, 3-CH), 5.74(d,1H, J=2.8,C=CH), 5.96 (d,1H,J=2.8,C=CH), 7.2-7.5(m,5H,Ph)	230(M ⁺ ,100), 215(53), 187(17), 185(26), 162(12), 161(18), 159(20), 145(30), 135(41), 127(100), 97(87), 69(16), 59(19)
II PhC≡CH	$ \begin{array}{c c} Me & Me \\ Si & C=C \end{array} $ $ \begin{array}{c} H \\ Ph \\ (62) \end{array} $	0.21(S,3H,SiMe), 0.22(S,3H,SiMe), 1.85(m,4H,3.4-CH ₂), 3.38(m,1H,2-CH), 3.75(m,2H,5-CH ₂),	232(M ⁺ ,5), 217(3), 189(20), 161(43), 146(15), 145(90), 135(28), 131(20), 130(100), 129(22),

Table 2 (continued)

Hydro- silane		Hydrosilylation products (yield,%)	¹ H NMR (δ,ppm; J,Hz)	MS, m/e (rel.intensity, %)
			6.45(d,1H,J=19.4, a-H), 6.99(d,1H, J=19.4, b-H), 7.2- 7.5(m,5H,Ph)	128(68), 113(16), 89(10), 75(60), 59(64)
II	PhC≡CH	Si-C-Ph (25)	0.18(S,3H,SiMe), 0.24(S,3H,SiMe), 1.85(m,4H,3.4-CH ₂), 3.38(m,1H,2-CH), 3.75(m,2H,5-CH ₂), 5.70(d,1H,J=2.9,C=CH), 5.92(d,1H,J=2.9,C=CH), 7.2-7.5(m,5H,Ph)	

To examine the possible application of I and II as reagents for the introduction of di- and tetrahydrofurylsilyl groups their reactions with styrene and phenylacetylene have been studied. The hydrosilylation of these compounds by I and II $(100^{\circ}\text{C}, \text{ catalyst H}_{2}\text{PtCl}_{6} \cdot 6\text{H}_{2}\text{O}, 5-30 \text{ min})$ leads to α - and β -adducts with high yield. In the case of alkynes only the corresponding trans-alkenes are formed (Table 2).

REFERENCES AND NOTES

- 1. 2-(4,5-Dihydrofuryl)trimethylsilane has been prepared by the reaction between 2-(4,5-dihydrofuryl)lithium and trimethylchlorosilane as described in 2.
- 2. F. T. Oakes and J. F. Sebastian. <u>J. Org. Chem.</u>, 1980, 45, 4959.
- 3. Bp, n_D and 1 H NMR spectral data of V are in compliance with those described in 4. Mass-spectrum of V, m/e (rel.intensity, %): $130(M^+, 12)$, 116(15), 115(100), 87(71), 75(13), 61(17), 59(19).
- 4. C. L. Smith and R. Gooden. J. Organomet. Chem., 1974, 81, 33.

Received, 20th October, 1983