SYNTHESIS OF 7-SUBSTITUTED 4H-1,4-BENZOTHIAZINES Radha Raman Gupta, Rakesh Kumar Gautam and Rakesh Kumar Department of Chemistry, University of Rajasthan, Jaipur-302004, India <u>Abstract</u> - One step synthesis is reported for 7-substituted 4H-1,4-benzothiazines involving the condensation of 5-substituted 2-aminobenzenethiols with p-methoxy and p-methylbenzoylacetone in DMSO which causes oxidative cyclisation. 4H-1,4-benzothiazines form an interesting series of medicinally important heterocycles 1-4 and we have recently reported the synthesis of 5-substituted 4H-1,4-benzothiazines 5. In continuation of our work it has been considered worthwhile to extend studies on synthesis of 7-substituted 4H-1,4-benzothiazines. In this communication we are reporting the synthesis of 7-substituted 4H-1,4-benzothiazines (C). The title compounds have been synthesized by oxidative cyclisation of 5-substituted 2-aminobenzenethiols (A) with β -diketones (B) (p-methoxy and p-methylbenzoylacetone) in DMSO. The formation of 7-substituted 4H-1,4-benzothiazines is represented in Scheme I. 5-substituted 2-aminobenzenethiols (A) have been prepared by the alkaline hydrolysis of 6-substituted 2-aminobenzothiazoles 5,6 . R HO CH₃ DMSO R = Br, Cl, OCH₃, CH₃ R₁ = $$c_6H_4OCH_3-p$$, $c_6H_4CH_3-p$ Scheme - I ## EXPERIMENTAL All the melting points are uncorrected. The purity of synthesized compounds was tested by thin-layer chromatography. The ir spectra of all these 7-substituted 4H-1,4-benzothiazines invariably showed an NH-absorption in the region 3200- 3340 cm⁻¹ and carbonyl group absorption in the region 1600-1615 cm⁻¹. The absorption bands in the region 1335-1395 cm⁻¹ are attributed to C-CH₃ ring vibrations. The nmr spectra of all these compounds exhibit a broad signal at \mathcal{T} 1.0-1.43 due to NH proton and the multiplets in the region $\mathcal{T}2.95$ -3.70 due to aromatic ring protons. Resonance signals in the region $\mathcal{T}7.8$ -7.9 show the presence of a CH₃ group in the allylic form at position 3 i.e. a C=C-CH₃ linkage. A singlet in the region $\mathcal{T}6.02$ -6.30 is observed in benzothiazines (C-1,C-2,C-3, C-4,C-7) due to O-CH₃ groups. The mass spectrum shows molecular ion peaks in accordance with their molecular weights. Synthesis of 5-substituted 2-aminobenzenethiols (A).- 5-substituted 2-aminobenzenethiols required in the synthesis of 7-substituted 4H-1,4-benzothiazines have been prepared following the details reported elsewhere⁵. 2-amino-5-bromobenzenethiol, mp 113° C (lit., mp $113-115^{\circ}$ C⁸) 2-amino-5-chlorobenzenethiol, mp 110° C(lit., mp 110° C⁸) 2-amino-5-methoxybenzenethiol, mp 105° C (lit., mp $103-105^{\circ}$ C⁸) 2-amino-5-methylbenzenethiol, mp 90° C (lit., mp 90° C⁷) Synthesis of 7-substituted 4H-1,4-benzothiazines (C,1-8).- To a stirred suspension of 3-diketones (B; 0.01 mol) (p-methoxy and p-methylbenzoylacetone) in DMSO (5 ml) was added (A; 0.01 mol) 5-substituted 2-aminobenzenethiol and refluxed for 1 h. The reaction mixture was cooled down to room temperature and filtered, washed with a small quantity of methanol and recrystallised from methanol to get pure compounds. Physical data of 7-substituted 4H-1,4-benzothiazines are summarised in Table-1. HETEROCYCLES, Vol. 22, No. 5, 1984 Table 1 Physical data of 7-substituted 4H-1,4-benzothiazines(C,1-8) | Compd. | Compound | | Мp | Colour | Yield | Molecular | % Found | | | % Calcd. | | | |--------|-----------------|--|-----|-----------------------|------------|---|---------|------|------|----------|------|------| | | R | R ₁ | °c | ** <u> </u> | %
 | Formula | С | Н | N | С | н | N | | C-1 | сн ₃ | с ₆ н ₄ осн ₃ р | 155 | Red | 75 | C ₁₈ H ₁₇ O ₂ NS | 69.20 | 5.43 | 4.52 | 69.45 | 5.46 | 4.50 | | C-2 | Cl | с ₆ н ₄ осн ₃ р | 187 | Blood red | 7 0 | C ₁₇ H ₁₄ O ₂ NSC1 | 61.29 | 4.24 | 4.23 | 61.53 | 4.22 | 4.22 | | C-3 | осн3 | с ₆ н ₄ осн ₃ р | 170 | D _a rk red | 65 | C ₁₈ H ₁₇ O ₃ NS | 66.25 | 5.21 | 4.26 | 66.05 | 5.19 | 4.28 | | C-4 | Br | с ₆ н ₄ осн ₃ р | 195 | Red | 68 | C ₁₇ H ₁₄ O ₂ NSBr | 54.38 | 3.74 | 3.70 | 54.25 | 3.72 | 3.72 | | C-5 | СН ₃ | ^С 6 ^Н 4 ^{СН} 3р | 181 | Dark red | 65 | C ₁₈ H ₁₇ ONS | 73.50 | 5.78 | 4.76 | 73.22 | 5.76 | 4.74 | | C~6 | Cl | C6H4CH-p | 190 | Red | 70 | C ₁₇ H ₁₄ ONSC1 | 64.28 | 4.45 | 4.41 | 64.65 | 4.43 | 4.43 | | C-7 | ∞н3 | С ₆ Н ₄ СН ₃ р | 177 | Dark red | 68.5 | C ₁₈ H ₁₇ O ₂ NS | 69.00 | 5.43 | 4.48 | 69.45 | 5.46 | 4.50 | | C_8 | Br | с ₆ н ₄ сн ₃ р | 122 | Red | 73 | C ₁₇ H ₁₄ ONSBr | 56.75 | 3.86 | 3.90 | 56.66 | 3.88 | 3.88 | ## REFERENCES - J.C. Sarcar, H. Zinnes, and J. Shavel, <u>Ger. Offen.</u>, 2365436; <u>Chem. Abstr.</u>, 1975, 82, 73007. - S. Ishige, H. Usui, and K. Saeki., Ger. Offen; 2704724; Chem. Abstr., 1977, 87, 144134. - D. Kaminsky, S. Klutchko, and M. Vonstrandtmann., <u>U.S. Pat.</u>, 3937828; <u>Chem. Abstr.</u>, 1976, <u>84</u>, 164807. - 4. H. Nagase, Agric. Chem. Pharm. Bull., 1974, 22, 42. - 5. R.R. Gupta and R. Kumar, Heterocycles, in press. - 6. R. Herz, U.S. Pat., 1,699,432; Chem. Abstr., 1929, 23, 1140. - 7. R. Adams, Editor, Organic Reactions, Vol. III, John Wiley & Sons, Inc., New York, 1959, p. 257. - 8. R.L. Mital and S.K. Jain, J. Chem. Soc. (C), 1969, 2148. Received, 21st December, 1983