SYNTHESIS OF 7-SUBSTITUTED 4H-1,4-BENZOTHIAZINES

Radha Raman Gupta, Rakesh Kumar Gautam and Rakesh Kumar

Department of Chemistry, University of Rajasthan, Jaipur-302004,

India

<u>Abstract</u> - One step synthesis is reported for 7-substituted 4H-1,4-benzothiazines involving the condensation of 5-substituted 2-aminobenzenethiols with p-methoxy and p-methylbenzoylacetone in DMSO which causes oxidative cyclisation.

4H-1,4-benzothiazines form an interesting series of medicinally important heterocycles 1-4 and we have recently reported the synthesis of 5-substituted 4H-1,4-benzothiazines 5. In continuation of our work it has been considered worthwhile to extend studies on synthesis of 7-substituted 4H-1,4-benzothiazines.

In this communication we are reporting the synthesis of 7-substituted 4H-1,4-benzothiazines (C). The title compounds have been synthesized by oxidative cyclisation of 5-substituted 2-aminobenzenethiols (A) with β -diketones (B) (p-methoxy and p-methylbenzoylacetone) in DMSO. The formation of 7-substituted 4H-1,4-benzothiazines is represented in Scheme I. 5-substituted 2-aminobenzenethiols (A) have been prepared by the alkaline hydrolysis of 6-substituted 2-aminobenzothiazoles 5,6 .

R HO CH₃

DMSO

R = Br, Cl, OCH₃, CH₃

R₁ =
$$c_6H_4OCH_3-p$$
, $c_6H_4CH_3-p$

Scheme - I

EXPERIMENTAL

All the melting points are uncorrected. The purity of synthesized compounds was tested by thin-layer chromatography. The ir spectra of all these 7-substituted 4H-1,4-benzothiazines invariably showed an NH-absorption in the region 3200-

3340 cm⁻¹ and carbonyl group absorption in the region 1600-1615 cm⁻¹. The absorption bands in the region 1335-1395 cm⁻¹ are attributed to C-CH₃ ring vibrations. The nmr spectra of all these compounds exhibit a broad signal at \mathcal{T} 1.0-1.43 due to NH proton and the multiplets in the region $\mathcal{T}2.95$ -3.70 due to aromatic ring protons. Resonance signals in the region $\mathcal{T}7.8$ -7.9 show the presence of a CH₃ group in the allylic form at position 3 i.e. a C=C-CH₃ linkage. A singlet in the region $\mathcal{T}6.02$ -6.30 is observed in benzothiazines (C-1,C-2,C-3, C-4,C-7) due to O-CH₃ groups.

The mass spectrum shows molecular ion peaks in accordance with their molecular weights.

Synthesis of 5-substituted 2-aminobenzenethiols (A).- 5-substituted 2-aminobenzenethiols required in the synthesis of 7-substituted 4H-1,4-benzothiazines have been prepared following the details reported elsewhere⁵.

2-amino-5-bromobenzenethiol, mp 113° C (lit., mp $113-115^{\circ}$ C⁸) 2-amino-5-chlorobenzenethiol, mp 110° C(lit., mp 110° C⁸) 2-amino-5-methoxybenzenethiol, mp 105° C (lit., mp $103-105^{\circ}$ C⁸) 2-amino-5-methylbenzenethiol, mp 90° C (lit., mp 90° C⁷)

Synthesis of 7-substituted 4H-1,4-benzothiazines (C,1-8).- To a stirred suspension of 3-diketones (B; 0.01 mol) (p-methoxy and p-methylbenzoylacetone) in DMSO (5 ml) was added (A; 0.01 mol) 5-substituted 2-aminobenzenethiol and refluxed for 1 h. The reaction mixture was cooled down to room temperature and filtered, washed with a small quantity of methanol and recrystallised from methanol to get pure compounds. Physical data of 7-substituted 4H-1,4-benzothiazines are summarised in Table-1.

HETEROCYCLES, Vol. 22, No. 5, 1984

Table 1

Physical data of 7-substituted 4H-1,4-benzothiazines(C,1-8)

Compd.	Compound		Мp	Colour	Yield	Molecular	% Found			% Calcd.		
	R	R ₁	°c	** <u> </u>	% 	Formula	С	Н	N	С	н	N
C-1	сн ₃	с ₆ н ₄ осн ₃ р	155	Red	75	C ₁₈ H ₁₇ O ₂ NS	69.20	5.43	4.52	69.45	5.46	4.50
C-2	Cl	с ₆ н ₄ осн ₃ р	187	Blood red	7 0	C ₁₇ H ₁₄ O ₂ NSC1	61.29	4.24	4.23	61.53	4.22	4.22
C-3	осн3	с ₆ н ₄ осн ₃ р	170	D _a rk red	65	C ₁₈ H ₁₇ O ₃ NS	66.25	5.21	4.26	66.05	5.19	4.28
C-4	Br	с ₆ н ₄ осн ₃ р	195	Red	68	C ₁₇ H ₁₄ O ₂ NSBr	54.38	3.74	3.70	54.25	3.72	3.72
C-5	СН ₃	^С 6 ^Н 4 ^{СН} 3р	181	Dark red	65	C ₁₈ H ₁₇ ONS	73.50	5.78	4.76	73.22	5.76	4.74
C~6	Cl	C6H4CH-p	190	Red	70	C ₁₇ H ₁₄ ONSC1	64.28	4.45	4.41	64.65	4.43	4.43
C-7	∞н3	С ₆ Н ₄ СН ₃ р	177	Dark red	68.5	C ₁₈ H ₁₇ O ₂ NS	69.00	5.43	4.48	69.45	5.46	4.50
C_8	Br	с ₆ н ₄ сн ₃ р	122	Red	73	C ₁₇ H ₁₄ ONSBr	56.75	3.86	3.90	56.66	3.88	3.88

REFERENCES

- J.C. Sarcar, H. Zinnes, and J. Shavel, <u>Ger. Offen.</u>, 2365436; <u>Chem. Abstr.</u>, 1975, 82, 73007.
- S. Ishige, H. Usui, and K. Saeki., Ger. Offen; 2704724; Chem. Abstr., 1977, 87, 144134.
- D. Kaminsky, S. Klutchko, and M. Vonstrandtmann., <u>U.S. Pat.</u>, 3937828; <u>Chem. Abstr.</u>, 1976, <u>84</u>, 164807.
- 4. H. Nagase, Agric. Chem. Pharm. Bull., 1974, 22, 42.
- 5. R.R. Gupta and R. Kumar, Heterocycles, in press.
- 6. R. Herz, U.S. Pat., 1,699,432; Chem. Abstr., 1929, 23, 1140.
- 7. R. Adams, Editor, Organic Reactions, Vol. III, John Wiley & Sons, Inc., New York, 1959, p. 257.
- 8. R.L. Mital and S.K. Jain, J. Chem. Soc. (C), 1969, 2148.

Received, 21st December, 1983