STUDIES ON PHENOTHIAZINES. PART 10^{1} : SYNTHESIS OF 1-ETHOXY-7-SUBSTITUTED PHENOTHIAZINES

Radha Raman Gupta and Rakesh Kumar

Department of Chemistry, University of Rajasthan, Jaipur-302 004, India

Abstract - Synthesis of 1-ethoxy-7-substituted phenothiazines via Smiles rearrangement is reported.2Amino-3-ethoxybenzenethiol was condensed with halonitrobenzenes and the substituted diphenyl-sulphides, so obtained, were converted into substituted formyl derivatives by formic acid. The latter on treatment with alcoholic KOH underwent Smiles rearrangement and yield 1-ethoxy-7-substituted phenothiazines. The structure of the synthesized compounds have been confirmed by their elemental analysis and spectral studies.

Phenothiazines find numerous applications in medicine and industry 2-5 and a number of phenothiazines have been synthesized for studying their biological activity and spectral studies. Much works 5-13 have been done on synthesis of 1-nitrophenothiazines. 1-Nitrophenothiazines can be easily prepared by Smiles rearrangement (in situ) of 2-aminobenzenethiols with reactive halonitrobenzenes in one step but 1-ethoxy-7-substituted phenothiazines cannot be prepared similarly and no reference appears to deal with synthesis of such phenothiazines. It has been considered worthwhile to extend synthetic study to 1-ethoxy-7-substituted phenothiazines in order to make them available for pharmacological screening.

In this communication we are reporting the synthesis of 1-ethoxy-7-substituted phenothiazines. These have been prepared by the Smiles rearrangement of substituted 2-formamidodiphenyl sulphides (D₁₋₆) which were obtained by the condensation of 2-amino-3-ethoxybenzenethiol (A) with halonitrobenzenes (B) and subsequent formylation with formic acid. Schematic representations of title compounds are represented in Scheme I. 2-Amino-3-ethoxybenzenethiol (A) required in the synthesis of 1-ethoxy-7-substituted phenothiazines has been prepared following the details reported elsewhere ¹⁴.

All the mps are uncorrected. The purity of all the synthesized compounds were checked on thin-layer chromatography.

Preparation of substituted diphenylsulphides(C₁₋₆). - In a hot solution of 2-amino-3-ethoxybenzenethiol (A;0.01 mol) in ethanol (20 ml) and anhydrous sodium acetate (0.01 mol) in ethanol (5 ml), was added to an alcoholic solution of halonitrobenzene (B; 0.01 mol) in ethanol (12 ml) and refluxed for 1 h**. The excess of the solvent was removed by evaporating solution on water bath and cooled in ice overnight. The solid separated was filtered and washed with 30% alcohol; and recrystallised from methanol. The physical data of substituted diphenylsulphides are summarised in Table-1.

<u>Preparation of substituted 2-formamidodiphenylsulphides (D₁₋₆). - A solution of substituted diphenylsulphides (C; 0.01 mol) in 90% formic acid (20 ml) was refluxed for 3 h. The contents of the flask were then poured into beaker containing crushed ice, filtered, washed with water until the filtrate was neutral. The</u>

^{**} It has been observed in the case of 1-ethoxy derivatives that over heating or a long time heating of the reaction mixture of 2-amino-3-ethoxybenzenethiol and halonitrobenzenes during the formation of diphenylsulphides resulted in the only liquids which were difficult to crystallise.

crude product was recrystallised from benzene. Physical data of substituted 2-formamidodiphenylsulphides are given in Table-2.

Preparation of 1-ethoxy-7-substituted phenothiazines(E₁₋₆). - To a refluxing solution of the substituted formyl derivatives (D; 0.01 mol) in acetone (15 ml) was added an alcoholic solution of potassium hydroxide (0.2 g in 5 ml ethanol). The colour of the reaction mixture darkned immediately on addition of an alcoholic potassium hydroxide solution. The contents were heated for 30 min. To this solution, a second lot of potassium hydroxide [0.2 g in ethanol (5 ml)] was added and refluxed for 2 h. The contents were poured into a beaker containing crushed ice and filtered. The residue was washed with cold water and finally with 30% ethanol and crystallised from methanol-benzene to give pure compounds. Physical data of 1-ethoxy-7-substituted phenothiazines are given in Table-3.

Infrared spectra .- Infrared spectra of 1-ethoxy-7-substituted phenothiazines exhibited a single peak at 3200-3350 cm⁻¹ which is assigned to NH group. Bands between 1050-1120 cm⁻¹ are probably associated with the C-O-C stretching mode.

Nmr spectra .- In the nmr spectra of 1-ethoxy-7-substituted phenothiazines, a singlet at δ 8.5-8.4 is observed for NH proton. The triplets in the region δ 1.25-1.05 and quarters in the region δ 3.6-4.0 are observed due to CH₃ and CH₂ groups of ethoxy linkage at 1-position respectively.

Mass spectra .- The molecular ion is the base peak and suggests the high stability of the phenothiazine nucleus due to a high degree of conjugation.

Table	1.	Physical	data	of	substituted	Diphenylsulphides(C ₁₋₆)	
-------	----	----------	------	----	-------------	--------------------------------------	--

Compd. No.	Compound	Yield (%)	Mp (°C)	Molecular Formula	% N	[
	R				Calcd.	Found
1.	CF ₃	40	127	C ₁₅ H ₁₃ N ₂ SO ₃ F ₃	7.82	7.78
2.	Н	48	95	C ₁₄ H ₁₄ N ₂ SO ₃	9.65	9.61
3.	NO2	60	139	$^{\text{C}}_{14}^{\text{H}}_{13}^{\text{N}}_{3}^{\text{SO}}_{5}$	12.53	12.58
4.	COOH	55	134	C ₁₅ H ₁₄ N ₂ SO ₅	8.38	8.41
5.	Br	5 8	149	$^{\text{C}}_{14}^{\text{H}}_{13}^{\text{N}}_{2}^{\text{SO}}_{3}^{\text{Br}}$	7.58	7.53
6.	Cl	52	115	C ₁₄ H ₁₃ N ₂ SO ₃ Cl	8.64	8.59

Table 2. Physical data of Substituted 2-Formamidodiphenylsulphides(D $_{1-6}$)

Compd.	Compound	Yield (%)	Mp (^O C)	Molecular Formula	% N	
	R				Calcd.	Found
1.	CF ₃	43	141	^C 16 ^H 13 ^N 2 ^{SO} 4 ^F 3	7.25	7.28
2.	Н	45	103	$^{\rm C}_{15}^{\rm H}_{14}^{\rm N}_{2}^{\rm SO}_{4}$	8.80	8.84
3.	NO2	58	151	C ₁₅ H ₁₃ N ₃ SO ₆	11.57	11.53
4.	С00Н	52	146	^C 16 ^H 14 ^N 2 ^{SO} 6	7.73	7.69
5.	Br	54	163	^C 15 ^H 13 ^N 2 ^{SO} 4 ^{Br}	7.05	7.10
6.	Cl	48	132	$^{\mathrm{C}}_{15}^{\mathrm{H}}_{13}^{\mathrm{N}}_{2}^{\mathrm{SO}}_{4}^{\mathrm{Cl}}$	7.95	8.02

Table 3. Physical data of 1-Ethoxy-7-substituted phenothiazines(E_{1-6})

Compd.	Compound	Yield	Мр	Molecular formula		Calcd	. (%)	Fo	ound(%)	
No.		(%)	(°c)		c	Н	N	С	Н	N
1.	CF ₃	58	166	C ₁₅ H ₁₂ NSOF ₃	57.87	3.85	4.50	57.90	3.90	4.53
2.	н	48	120	C ₁₄ H ₁₃ NSO	69.13	5.34	5.76	69.18	5.39	5.78
3.	NO2	60	178	$^{\text{C}}_{14}^{\text{H}}_{12}^{\text{N}}_{2}^{\text{SO}}_{3}$	58.33	4.16	9.72	58.30	4.21	9.76
4.	СООН	50	169	^C 15 ^H 13 ^{NSO} 3	62.71	4.52	4.87	62.68	4.54	4.90
5.	Br	55	190	C ₁₄ H ₁₂ NSOBr	52.71	3.72	4.34	52.20	3.77	4.36
6.	Cl	50	159	C ₁₄ H ₁₂ NSOC1	60.64	4.33	5.65	60.68	4.37	5.63

REFERENCES

- For part 9, see R.R. Gupta, G.S. Kalwania, and M. Kumar, <u>Heterocycles</u>, 1981, 16, 1527.
- 2. R.P.Carson and E.F. Domino, Anesthesiology, 1962, 23, 187.
- H.L. Yale, F. Sowinski, and J. Bernstein, <u>J. Am. Chem. Soc.</u>, 1975, 79, 4375.
- 4. J. Herwikva and V. Kello, Chem. Zvest., 1973, 127, 249.
- 5. German Patent, 2,220,388, Chem. Abstr., 1974, 80, 121783.
- V.A. Skorodumov and S.V. Zhuravlev, <u>Zh. Obshch. Khim.</u>, 1960, <u>30</u>, 1680;
 <u>Chem. Abstr.</u>, 1961, <u>55</u>, 1624.
- 7. M. Raileanu and A. Turcu, Rev. Roumaine de Chimie, 1966, 11, 1423.
- 8. C. Bodea, V. Faroasan, and T. Panea, Rev. Roumaine de Chimie, 1966, 11, 239.
- 9. H.L. Sharma, V.N. Sharma, and R.L. Mital, Tetrahedron Lett., 1967, 17, 1657.
- S.K. Jain and R.L. Mital, <u>J.Chem. Soc</u>. (C), 1969, 2148.
- 11. H.L. Sharma, V.N. Sharma, and R.L. Mital, Aus. J. Chem., 1968, 21, 3081.
- 12. s.V. Zhuravlev and V.A. Skorodumov, Zh. Offan, Khim., 1965, 10, 142; Chem. Abstr., 1965, 62, 16236.
- 13. C.F. Wight and S. Smiles, J. Chem. Soc., 1935, 340.
- 14. R.R. Gupta and Rakesh Kumar, Heterocycles, in press.

Received, 6th January, 1984