A CONVENIENT SYNTHESIS OF NOVEL 3-AMIDINO-2-OXO-1,2-DIHYDROQUINO-XALINE

Yoshihisa Kurasawa, Yoshihisa Okamoto, and Atsushi Takada School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108, Japan

<u>Abstract</u> — The reactions of 3 - (5 - 0x0 - 1, 2, 4 - 0xadiazolin - 3 - y1) - 2 - 0x0 - 1, 2 - dihydroquinoxaline (2) and 2 - 0x0 - 1, 2 - dihydroquinoxaline - 3 - amidoxime (3), derived from 3 - cyano - 2 - 0x0 - 1, 2 - dihydroquinoxaline (1), with FeSO₄-HCl and Fe-HCl afforded Fe(II) complexes of 3 - amidino - 2 - 0x0 - 1, 2 - dihydroquinoxaline (4), whosetreatment with NaOH gave the free ligand 4.

In a previous paper,¹ we reported the conversion of 3-cyano-2-oxo-1,2-dihydroquinoxaline (1) into 3-(5-oxo-1,2,4-oxadiazolin-3-y1)-2-oxo-1,2-dihydroquinoxaline (2) via 2-oxo-1,2-dihydroquinoxaline-3-amidoxime (3). However, there have been no reports on the conversion of 1 into 3-amidino-2-oxo-1,2-dihydroquinoxaline (4) (Scheme 1). Since further reduction of N-0 bond of 2 or 3 would result in the formation of 4, accomplishment of this process would provide an access to a route of nitrile to amidine, presumably bearing comparison with the Pinner's amidine synthesis.² In

Scheme 1

Scheme 2

Table I. IR and 1 H-NMR Spectral Data for 4, 5a, and 5b.

	-	
Compound	IR $v(KBr)$ (cm ⁻¹)	¹ H-NMR (solvent) δ(ppm)
3-AQ (4)	3420 1700	(CF ₃ COOH): 9.28(s, 1H, NH), ^a 8.40-7.33 (m, 4H, aromatic)
$Fe(3-AQ)_2C1_2 \cdot H_2O(5a)$	3570 1700 3400 3300	(DMSO- <u>d</u>): 9.64(br.s, 4H, NH), 8.00- 7.17(m, 4H, aromatic), 3.50(br.) ^b
$Fe(3-AQ)_2SO_4 \cdot H_2O(5b)$	3450 1705 3320 1685 3170	(DMSO- <u>d</u> ₆): 9.57(br.s, 4H, NH), 8.00- 7.33(m, 4H, aromatic), 4.23(br.) ^b

a: Three other NH protons disappeared, presumably due

to CF_3COOH . b: A signal due to H_2O .

Compound	<u>m/z</u>	Ion species	Formula	Calcd.	Found	Relat. abundance
4	188	[M] ⁺	C ₉ H ₈ N ₄ O	188.070	188.068	100
	171	[M-NH ₃] ⁺	C ₉ H ₅ N ₃ O	171.043	171.044	24.0
	160	[M-CO] ⁺	C ₈ H ₈ N ₄	160.075	160.073	46.8
5a sam ∼∼	same	as 4*			188.071	100
					171.042	15.7
					160.073	32.0
5b si	same	as 4*			188.068	100
					171.043	37.9
					160.073	32.1

Table II. Mass Spectral Data for 4, 5a, and 5b.

* 5a and 5b exhibited M^+ of the free ligand 4 due to thermal dissociation in the inlet system of the mass spectrometer.

this paper, we describe a facile synthesis of $\frac{4}{2}$ via $\frac{2}{2}$ or $\frac{3}{2}$ from $\frac{1}{2}$. Although the methods have already been reported for the conversion of 1,2,4-oxadiazoline ring and amidoxime into amidine using reducing agents such as P-HI³ and Fe(CO)₅,⁴ respectively, we have found that the reduction of N-O bond of $\frac{2}{2}$ and $\frac{3}{2}$ is conveniently achieved with an inexpensive and easily available agent FeSO₄-HCl⁵ and Fe-HCl to give $\frac{4}{2}$ (3-AQ).

Refluxing of 3 (4 g) with Fe (2 g) in c.HCl (50 ml) and AcOH (150 ml) provided the Fe(3-AQ)₂Cl₂·H₂O complex (5a) (4 g, 88.3%) as yellow needles (from H₂O-EtOH) of mp 269-270 °C (dec.) [<u>Anal</u>. Calcd for $C_{18}H_{18}Cl_2FeN_8O_3$ (5a): C, 41.48; H, 3.48; Cl, 13.61; N, 21.50. Found: C, 41.62; H, 3.83; Cl, 13.65; N, 21.71.]. The reaction of 3 (1 g) with FeSO₄ (5 g) in c.HCl (10 ml) and AcOH (90 ml) produced the Fe(3-AQ)₂-SO₄·H₂O complex (5b) (600 mg, 50.4%) as yellow needles (from H₂O-EtOH) of mp 190-193 °C [<u>Anal</u>. Calcd for $C_{18}H_{18}FeN_8O_7S$ (5b): C, 39.57; H, 3.32; N, 20.51; S, 5.87. Found: C, 39.83; H, 3.75; N, 20.44; S, 5.82.]. Moreover, similar reactions of 2-oxo-1,2-dihydroquinoxaline-3-amidoxime (6) (1 g) with Fe (1 g) and FeSO₄ (5 g) in c. HCl (10 ml) and AcOH (90 ml) for four for an four for complex (50 ml) for the fourth of the fourth o

furnished the free ligand 3-AQ ($\frac{4}{2}$) (640 mg, 83.3% from 5a; 480 mg, 69.7% from 5b) as yellow needles (trituration with EtOH-H₂O) of mp 310-312 °C [<u>Anal</u>. Calcd for C₀H₈N₄O ($\frac{4}{2}$): C, 57.44; H, 4.29; N, 29.77. Found: C, 57.21; H, 4.29; N, 29.47.].

The structural assignment of $\frac{4}{2}$, $\frac{5a}{2a}$, and $\frac{5b}{2a}$ (Scheme 2) was based on the microanalytical and spectral data (Tables I and II). Especially, the IR spetcral data indicated that the NH absorption bands are quite different among $\frac{4}{2}$, $\frac{5a}{2a}$, and $\frac{5b}{2a}$, presumably due to the presence or absence of a chelation, while the chelation hardly exerts an influence on the C=O absorption bands of $\frac{4}{2}$, $\frac{5a}{2a}$, and $\frac{5b}{2a}$, suggesting no participation of the C=O group in the chelation.⁶ Mass spectra of $\frac{4}{2}$, $\frac{5a}{2a}$, and $\frac{5b}{2a}$ showed similar fragmentations.

REFERENCES AND FOOTNOTES

- Y. Kurasawa, M. Ichikawa, A. Sakakura, and A. Takada, <u>Chem. Pharm. Bull.</u>, submitted.
- 2. A. W. Dox, "Organic Syntheses," Coll. Vol. I, ed. by A. H. Blatt, John Wiley and Sons, Inc., New York, 1932, p. 5.
- 3. C. Behr, "The Chemistry of Heterocyclic Compounds," 1962, 17, 256, and references cited therein.
- 4. A. Dondoni, J. C. S. Chem. Comm., 1975, 761.
- 5. L. I. Smith and J. W. Opie, "Organic Syntheses," Coll. Vol. III, 1955, p. 56.
- 6. G. S. Sanyal, A. B. Modak, and A. K. Mudi, <u>Ind. J. Chem.</u>, 1981, 20A, 510;
 M. Noji, Y. Kidani, and H. Koike, <u>Bull. Chem. Soc. Japan</u>, 1975, 48, 2274.

Received, 13th February, 1984