SYNTHESES AND REACTIONS OF PYRIDAZINE DERIVATIVES XX¹ STUDIES ON THE RADICAL METHYLATION OF THE 1,2-DIAZINE SYSTEM

Gottfried Heinisch^{*} and Gerhard Lötsch Institut für Pharmazeutische Chemie, Universität Wien Währingerstraße 10, A-1090 Vienna, Austria

<u>Abstract</u> — Protonated pyridazines (1,2,3) on reaction with methyl radical (generated by oxidative decarboxylation of acetic acid or by redox reaction of t-BuOOH/FeSO₄·7H₂O) are shown mainly to be attacked at positions 8 to the nitrogen atoms. However, formation of compounds 2, 4, 5, 6, 8, 9 and 10 indicates lower degree of regioselectivity compared with homolytic benzylation or acylation of the 1,2-diazine system. Synthesis of ethyl 5-styryl-4pyridazinecarboxylates (<u>13,14</u>) was achieved by homolytic methylation of ethyl 4-pyridazinecarboxylate(<u>11</u>) followed by condensation with aromatic carbaldehydes.

In spite of the fact that the "Minisci" reaction² has, due to its high selectivity and versatility, attracted much attention in heterocyclic chemistry during the last decade, there are, to our knowledge, only a few reports³⁻¹³ dealing with this type of substitution reactions of the protonated 1,2-diazine system. We describe herein investigations of reactions of protonated pyridazine (<u>1</u>), methylpyridazines <u>2</u> and <u>3</u> and ethyl 4-pyridazinecarboxylate(<u>11</u>) with methyl radical generated by Ag^+ -catalyzed oxidative decarboxylation of acetic acid with peroxydisulphate⁵ (method A) or by redox process of t-BuOOH/FeSO₄·7H₂O¹⁴ (method B), respectively.

As can be seen from results listed in Tables 1 and 2, reactions of 1,2 and 3 yield, in contrast to findings with photo-induced radical methylation of pyridazines,⁶ mixtures, containing all of the theoretically possible C-methylated pyridazines.¹⁵ Compounds <u>1-10</u>, all known from literature,^{6,16-21}could be separated by means of GLC. They were identified by their behaviour in gas-chromatographic analysis and their spectroscopic (ms, nmr) characteristics.

			8	ratio	of	proc	ducts	(% yie:	ld ^{a)})		
			me	thod A ^D)				met	thod B ^C)	
compd.	refs.	ex	.1	e	хp.	. 2 ^{d)}	e	∍x]	p.3 ^{e)}	е	хp	.4 ^{f)}
<u>1</u>	16	1	1	-		/	24	1	/	2		7
<u>2</u>	17	2	(2)	-	(-)	-	7	(9)	2	(2)
<u>3</u>	18	17	(18)	-	(-)	45	5	(60)	21	(21)
<u>4</u>	19	12	(12)	-	(-)	6	5	(8)	12	(12)
<u>5</u>	20	7	(7)	-	(-)	:	3	(4)	7	(7)
<u>6</u>	21	< 1	(<1)	-	(-)	<`	l	(<1)	<1	(<1)
<u>7</u>	19	29	(29)	2	(2)	12	2	(16)	32	(33)
<u>8</u>	6	25	(25)	50	(5	50)	2	2	(3)	20	(20)
<u>9</u>	21	3	(3)	-	(-)	-	-	(-)	2	(2)
<u>10</u>	21	2	(2)	48	(4	48)	-	-	(-)	2	(2)

Table 1: Reaction of Pyridazine (1) with Methyl Radical

<u>Table 2</u>: Reactions of 3-Methylpyridazine (<u>2</u>) and 4-Methylpyridazine (<u>3</u>) with Methyl Radical (method A^{b})

	% ratio of	f products	% ratio o:	f products
	(% yie	eld ^{a)})	(% yı¢	eld ^{a)})
compound	obtaine	ed from <u>2</u> :	obtain	ed from <u>3</u> :
2	<1	1	-	(-)
<u>3</u>	-	(-)	2	/
<u>4</u>	8	(8)	4	(4)
<u>5</u>	5	(5)	2	(2)
6	<1	(<1)	-	(-)
7	-	()	27	(28)
.8	55	(55)	52	(53)
<u>9</u>	6	(6)	2	(2)
<u>10</u>	26	(26)	10	(10)

a)yields based on converted base; b)Ag⁺-catalyzed oxidative decarboxylation of acetic acid;⁵ c)redox reaction of t-BuOOH/FeSO₄·7H₂O;¹⁴ d)methylation of the reaction mixture obtained from exp.1; e)t_{max}=15°C; f)t_{max}=25°C;

	R ¹	r ²	r ³	R ⁴					
<u>1</u>	н	н	н	H			R	2	
2	СН3	н	н	н			R	∕ <mark>,</mark> R'	
<u>3</u>	н	сн ₃	н	Н			DA	I -N	
<u>4</u>	СНЗ	сн ₃	н	н			n ∠V		
<u>5</u>	сн3	Н	сн ₃	Н		1 1	2	2	4
<u>6</u>	СН3	н	Н	Сн ₃		R'	R ²	R ³	R ⁴
<u>7</u>	н	снз	сн ₃	Н	<u>11</u>	н	COOC ₂ H ₅	н	Н
<u>8</u>	Сн ₃	CH3	Снз	Н	<u>12</u>	н	COOC ₂ H ₅	CH3	н
<u>9</u>	CH3	сн ³	н	CH3	<u>13</u>	н	COOC 2 ^H 5	CH=CH-Ph	н
10	СН	СНз	CH3	CH.	14	н	COOC ₂ H _E	CH=CH-(2,4-di-C1)-Ph	н

In agreement with results obtained by Tsuchiya et al.⁶ and other related reactions previously reported, $^{3-13,22}$ experiments (shown in Tables 1 and 2) again indicate, that, unlike other N-deficient heteroaromatics studied,² the 1,2-diazine system is attacked mainly by nucleophilic carbon radicals at positions 4 and 5, respectively and not at the positions of lowest electron densities, α to the nitrogen atoms. However, in contrast to homolytic benzylation⁸ or acylation,^{9,11,13} there is a marked lack of regioselectivity in homolytic methylation, as can be seen from formation of 2, 4, 5, 6 and 9 in the reactions of 1, 2 and 3. Furthermore in compounds 7and 8, where positions 4 and 5 are occupied by substituents, positions 3+6 and 6 are attacked to a considerable degree. There is additional evidence for this fact, that repeated reaction of the mixture obtained from exp.1 (Table 1) almost exclusively leads to formation of 8 and 10 (Table 1, exp.2).

Whereas method A (base:persulphate ratio 1:3) leads to almost quantitative conversion of the heteroaromatics, homolytic methylation of $\underline{1}$, using method B (base:peroxide ratio 1:3, $15^{\circ}C^{14}$), was found to result in only 76% conversion of $\underline{1}$ (Table 1, exp.3). However, reacting $\underline{1}$ at a maximum temperature of $25^{\circ}C$ (exp.4) permits a 98% conversion. Evidently there is almost no difference in ratio of products thus obtained, compared with the results from exp.1. Thus the lower reaction temperature of method B seems to be more suitable for preparation of C-methylated pyridazines containing additional functional groups, e.g. alkyl 5-methyl-4-pyridazinecarboxylates, being of interest in syntheses of 4,5-annulated 1,2-diazines. This assumption is supported by the fact, that in the reaction of $\underline{11}$ (Table 3) the ester group was not affected, using method B.

Table 3:	Reaction	of	Ethyl	4-pyridazinecarboxylate(<u>11</u>)	with	Methy1	Radical
	(method B	a)					

	ξr	atio	of	prod	ucts	(% yie	1d ^{b)})	molec. weight
compound	exp	.5 ^{c)}		exp	.6 ^{d)}	exp	.7 ^{e)}	(from ms)
<u>11</u>	26	1		-	/	7	1	
<u>12</u>	64	(86)		38	(38)	68	(73)	166
dimethylated compd.	4	(6)		15	(15)	7	(8)	180
dimethylated compd.	6	(8)		41	(41)	17	(18)	180
trimethylated compd.	-	(-)		6	(6)	1	(1)	194

a)redox reaction of t-BuOOH/FeSO₄·7H₂O,¹⁴ b)yields based on converted base; c)base:peroxide ratio 1:3; d)methylation of the reaction-mixture obtained from exp.5, base:peroxide ratio 1:3; e)base:peroxide ratio 1:4;

As shown by GLC, ethyl 5-methyl-4-pyridazinecarboxylate($\underline{12}$) is formed in 64% yield, with a 74% conversion of $\underline{11}$. Raising conversion rate (by alteration of base:peroxide ratio or by repeated methylation of the reaction mixture obtained) is not accompanied by an increase of the yield of $\underline{12}$ due to increased formation of di- and trimethylated products (Table 3, exps.6,7).

Attempts to separate methylated ethyl 4-pyridazinecarboxylates in a preparative scale failed. The structure of <u>12</u>, however, was confirmed on the basis of ms and nmr data and furthermore by conversion to well defined compounds <u>13</u> and <u>14</u>. Thus homolytic methylation of <u>11</u>, followed by condensation with aromatic carbaldehydes, provides an efficient method for the preparation of hitherto unknown (<u>E</u>)-ethyl 5-styryl-4-pyridazinecarboxylates.

EXPERIMENTAL

Melting points (uncorrected) were determined with a Kofler apparatus. Ir spectra were recorded on a Jasco IRA-1 spectrometer (KBr disks; v_{max} in cm⁻¹). ¹H-nmr spectra were recorded with a Varian EM 390 (90MHz), with CDCl₃ as solvent; chemical shifts (J in Hz) are reported in ppm downfield from internal TMS. Mass spectra were obtained on a Finnigan 4500 or Varian MAT CH-7. Microanalyses were performed by the "Institut für Physikalische Chemie" (University of Vienna, Dr. Zak). GLC analyses were carried out with a Varian VAE 3700 (N₂, 30ml/min; FID); 1.5m x 6.35mm glass columns, packed with 3% amine 220 on Chromosorb W or 3% OV 17 on Chromosorb WAW, respectively, were used.

Reaction of Pyridazine (1), 3-Methylpyridazine (2) and 4-Methylpyridazine (3) with Methyl Radical (method A)

To a stirred solution of <u>1</u> (0.8g, 0.01mol), acetic acid (3.0g, 0.05mol), $AgNO_3$ (0.51g, 0.003mol) in 10% aq. H_2SO_4 (10ml) at 90°C a solution of $(NH_4)_2S_2O_8$ (6.85g, 0.03mol) in 15ml H_2O was added dropwise over a period of 10 min. Heating was continued for another 60 min. The solution was cooled to 0°C, basified with conc. NH_4OH and extracted with CH_2Cl_2 . After removal of solvent in vacuo the residue was analyzed by GLC (amine 220).

The reactions of 2 and 3 as well as repeated methylation of products obtained from exp.1 (cf. Table 1) were carried out under identical conditions.

Reaction of Pyridazine (1) with Methyl Radical (method B)

To a stirred solution of <u>1</u> (1.2g, 0.015mol) in 10% aq. H_2SO_4 (30ml) at 15°C (exp.3) or 25°C (exp.4), resp., t-BuOOH (4.05g, 0.045mol) and a saturated aq. solution of FeSO₄·7H₂O (12.5g, 0.045mol) were added dropwise simultaneously. After stirring for another 60 min the solution was basified with conc. NH_4OH and extracted with CH_2Cl_2 . The solvent was removed in vacuo, the residue was analyzed by GLC (amine 220).

Identification of products: 1,2,3 were identified by comparison with authentic material. ^{16,17,18} Structure of <u>10</u> follows from GLC-ms [M⁺ at m/e 136 (100%), major peaks at m/e 107,93,91,77] and nmr data [2.60 (s, 6H, C-3-CH₃, C-6-CH₃), 2.23 (s, 6H, C-4-CH₃, C-5-CH₃)]. 8 and 9 were identified as trimethylpyridazines by means of ms-data [8: M⁺ at m/e 122 (100%), major peaks at m/e 93, 79, 77; 9: M⁺ at m/e 122 (100%), major peaks at m/e 93, 79, 77]. Differentiation between 8 and 9 was based on nmr data of the reaction mixture obtained from exp.2 (cf. Table 1). Besides signals of <u>10</u>, the spectrum exhibits signals at 8.79 (s, 1H, H-6), 2.64 (s, 3H, C-3-CH₃), 2.27, 2.23 (2 x s, 2 x 3H, C-4-CH₃ and C-5-CH₃),⁶ indicating the second main component of the mixture to be $\underline{8}$. On basis of molecular weights determined by ms, 4,5,6,7 were shown to be dimethylpyridazines. As the peak of one of these compounds exclusively appears in gaschromatograms of reaction mixtures obtained from <u>1</u> or <u>3</u> this product is assumed to be 4,5-dimethylpyridazine (<u>7</u>) [M^+ at m/e 108 (100%), major peaks at m/e 79, 77]. For another two dimethylpyridazines structures $\underline{4}$ and $\underline{5}$ had to be assigned, as these compounds could be detected by GLC as reaction products of 1 and 3 as well as 2, therefore obviously bearing methyl groups at α - and B-positions. Accordingly the nmr spectrum of a mixture of these

two compounds separated from other reaction products by micropreparative GLC, exhibits signals of 3,4-dimethylpyridazine ($\underline{4}$) [8.94 (d, J=5, 1H, H-6), 7.22 (d, J=5, 1H, H-5), 2.70 (s, 3H, C-3-CH₃), 2.33 (s, 3H, C-4-CH₃)] and 3,5-dimethylpyridazine ($\underline{5}$) [8.90 (s, 1H, H-6), 7.18 (s, 1H, H-4), 2.70 (s, 3H, C-3-CH₃), 2.33 (s, 3H, C-4-CH₃)]. Mass spectra of $\underline{4}$ and $\underline{5}$ show almost identical fragmentation patterns[\underline{M}^+ at m/e 108 (100%), major peaks at 79, 77)], however considering the intensity ratio of nmr signals permits assignement of compounds $\underline{4}$ and $\underline{5}$ to peaks in gas chromatograms. The dimethylated pyridazine, obtained from exps.1,3,4 (cf. Table 1) in <1% yield finally had to be 3,6-dimethylpyridazine ($\underline{6}$) [\underline{M}^+ at m/e 108, major peaks at m/e 107, 91, 79 (100%), 77)].

Reaction of Ethyl 4-pyridazinecarboxylate (11) with Methyl Radical

To a solution of $\underline{11}^{23}$ (2.28g, 0.015mol) in 10% aq. H_2SO_4 (30ml), equimolar amounts (cf. Table 3, exps.5,7) of t-BuOOH and $FeSO_4 \cdot 7H_2O$ (saturated aq. solution) were added dropwise simultaneously with stirring and cooling (20-25°C). The solution was stirred for another 60 min and then extracted with CH_2Cl_2 . After removal of solvent the residue was analyzed by GLC (OV 17).

Repeated methylation (cf. Table 3, exp.6) was carried out under identical conditions. Ethyl 5-methyl-4-pyridazinecarboxylate (<u>12</u>): The nmr spectrum of the reaction mixture resulting from exp.5, containing <u>12</u> as main component, shows major peaks at 9.44 (s, 1H, H-3), 9.18 (s, 1H, H-6), 4.45 (q, J=7, 2H, CH_2), 2.63 (s, 3H, C-5-CH₃), 1.42 (t, J=7, 3H, CH_2 -<u>CH₃</u>).

(E)-Ethyl 5-styryl-4-pyridazinecarboxylate (13)

The mixture obtained from exp.5 (0.7g), benzaldehyde (1.06g, 0.01mol), pyridine (1.58g, 0.02mol) and piperidine (0.1g, 0.001mol) is stirred with heating (80°C) under nitrogen until conversion of <u>12</u> is complete (GLC: OV 17; ca. 48 h). After removal of volatile compounds by heating (70°C, 10^{-1} mbar) in a kugelrohr apparatus, the residue is crystallized from toluene yielding 0.4g (32%, based on <u>11</u>) yellow crystals, mp 115-117°C. Ms: M⁺ at m/e 254; ir: 1705 (V_{C=O}), 1618 (V_{C=C}), 970 (d_{C-H}); nmr: 9.62 (s, 1H, H-3), 9.52 (s, 1H, H-6), 8.14, 7.96 (part of AB-system, J=18, 1H, -CH=), 7.74-7.30 (m, 6H, phenyl-H, -CH=), 4.48 (q, J=7, 2H, CH₂), 1.48 (t, J=7, 3H, CH₃); Anal. calcd. for C₁₅H₁₄N₂O₂: C, 70.91; H, 5.55; N, 11.02. Found: C, 70.78; H, 5.62; N, 10.93.

(E)-Ethyl 5-(2,4-dichlorostyryl)-4-pyridazinecarboxylate (14)

<u>14</u> is prepared according to the method above starting with 2,4-dichlorobenzaldehyde. Crystallisation from toluene yields 0.5 g (34% based on <u>11</u>) of yellow crystals, mp 102-104°C. Ms: M⁺ at m/e 322 (100%), 324 (68%), 326 (11%); ir: 1725 ($v_{C=O}$), 1620 ($v_{C=C}$), 960 (δ_{C-H}); nmr: 9.56 (s, 1H, H-3), 9.47 (s, 1H, H-6), 8.07-7.18 (m, 5H, phenyl-H, 2 x -CH=), 4.45 (q, J=7, 2H, CH₂), 1.43 (t, J=7, 3H, CH₃); Anal. calcd. for C₁₅H₁₂N₂O₂Cl₂: C, 55.74; H, 3.74; N, 8.67. Found: C, 55.74; H, 3.84; N, 8.68.

ACKNOWLEDGEMENTS

We are grateful to the "Hochschuljubiläumsstiftung der Stadt Wien" for financial support and to B. Kiener and G. Zinsberger for skillful technical assistance.

REFERENCES AND NOTES

- 1. XIX: G. Allmaier and G. Heinisch, J. Heterocyclic Chem., in press
- 2. F. Minisci, <u>Synthesis</u>, 1973, 1; F. Minisci and O. Porta, <u>Advan. Heterocycl.</u> Chem., 1974, 123; F. Minisci, Topics Curr. <u>Chem.</u>, 1976, <u>62</u>, 1
- 3. A. Pollak, B. Stanovnik and M. Tiśler, Tetrahedron, 1968, 2623
- 4. M. Japelj, B. Stanovnik and M. Tiśler, Monatsh. Chem., 1969, 100, 671
- 5. F. Minisci, R. Bernardi, F. Bertini, R. Galli and M. Perchinummo, <u>Tetrahedron</u>, 1971, 3575
- 6. T. Tsuchiya, H. Arai and H. Igeta, Chem. Pharm. Bull., 1972, 20, 273
- 7. A. Jentzsch, Ph. D. thesis, University of Vienna, 1974
- 8. G. Heinisch, A. Jentzsch and M. Pailer, Monatsh. Chem., 1974, 105, 648
- 9. M. Braun, G. Hanel and G. Heinisch, Monatsh. Chem., 1978, 109, 63
- 10. G. Heinisch, A. Jentzsch and I. Kirchner, Tetrahedron Lett., 1978, 619
- 11. G. Heinisch and I. Kirchner, Monatsh. Chem., 1979, 110, 365
- 12. G. Heinisch and I. Kirchner, J. Heterocycl. Chem., 1980, 17, 1501
- G. Heinisch, I. Kirchner, I. Kurzmann, G. Lötsch and R. Waglechner, <u>Arch.</u> <u>Pharm. (Weinheim)</u>, 1983, <u>316</u>, 508
- 14. F. Minisci, R. Galli, V. Malatesta and T. Caronna, <u>Tetrahedron</u>, 1970, 4083
- 15. By changing the rate of addition of persulphate there is neither considerable difference in conversion rate nor in ratio of products.
- 16. R. Mizzoni and P. Spoerri, J. Am. Chem. Soc., 1951, 73, 1873

- 17. 0. Poppenberg, Chem. Ber., 1901, 34, 3257
- 18. R. Mizzoni and P. Spoerri, <u>J. Am. Chem. Soc.</u>, 1954, <u>76</u>, 2201
- 19. R. Horning and E. Amstutz, <u>J. Org. Chem.</u>, 1955, <u>20</u>, 707
- 20. J. Levisalles, Bull. Soc. Chim. France, 1957, 1004
- 21. J. Levisalles and P. Baranger, Compt. Rend., 1956, 242, 1336
- 22. J. Bradshaw, M. Tiśler and B. Stanovnik, <u>J. Org. Chem.</u>, 1974, <u>39</u>, 793
- 23. W. Leanza, H. Becker and E. Rogers, <u>J. Am. Chem. Soc.</u>, 1953, <u>75</u>, 4086

Received, 13th February, 1984