AMINOPYRIMIDINES AND DERIVATIVES. XVI<sup>1</sup>. SYNTHESIS OF 7-GLYCOSYL-AMINO-OXAZOLO(5,4-d)PYRIMIDINES<sup>2</sup>

- A. Sánchez Rodrigo<sup>+</sup>, C. Rodriguez Melgarejo, M. Rodriguez Alonso,
- M. Nogueras Montiel<sup>+</sup>, M. Melgarejo Sampedro<sup>\*</sup> and R. Asenjo Asenjo
- + Depto. Química Orgánica, Colegio Universitario, Jaén. Spain

  Depto. Química Orgánica, Universidad de Granada, Spain

<u>Abstracts</u> - Treatment of 5-amino-4-glycosylamino-6-oxo-pyrimidines  $\underline{1}$  with acetic anhydride under reflux has led to 2-methyl-7-glycosylamino-oxazolo (5,4-d)pyrimidines 2.

5-Amino-4-glycosylamino-pyrimidines  $\underline{1}^3$  are versatile starting materials for the synthesis of glycosides of various condensed heterocycles. Thus, glycosyl purines  $^4$ , glycosyl triazolopyrimidines  $^5$  and glycosyl pteridines  $^6$  have been synthesized from them. We report herein its utility for the synthesis of 7-glycosylamino-oxazolo(5, 4-d)pyrimidines  $\underline{2}$ , as shown in the Scheme



| <u>2</u> | R'                        | R" | Yield<br>%                                                                           | M *                                                                          |          |  |
|----------|---------------------------|----|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------|--|
|          |                           |    |                                                                                      | Calculated                                                                   | Found    |  |
| а        | Н                         | Н  |                                                                                      | 454.11578<br>C <sub>18</sub> H <sub>22</sub> N <sub>4</sub> D <sub>8</sub> S | 454.1159 |  |
| ь        | н                         | Ac | 20                                                                                   | 496.1263<br>C <sub>20</sub> H <sub>24</sub> N <sub>4</sub> O <sub>9</sub> S  | 496.1262 |  |
| С        | CH <sub>2</sub> OAc       | Н  | 10                                                                                   | 526.1369<br>C <sub>21</sub> H <sub>26</sub> N <sub>4</sub> O <sub>10</sub> S | 526.1364 |  |
| d        | CH <sub>2</sub> OAc Ac 30 |    | 568.14746<br>C <sub>23</sub> H <sub>28</sub> N <sub>4</sub> D <sub>11</sub> S 568.14 |                                                                              |          |  |

Oxazolo(5,4-d)pyrimidines have usually been synthesized by two general methods: by cyclization of 4,5-disubstituted oxazoles  $^7$ , or, more often from either 5-amino-6-hydroxypyrimidines  $^8$ , or 5-acylamino-6-hydroxypyrimidines  $^{8a-c}$ , or 5-imino-6-hydroxypyrimidines  $^{10}$  by cyclization with either POCl<sub>3</sub>  $^{8a-b}$ , or PhCOCl $^{8c-d}$ , or SOCl $_2^{10a,10c}$  or NBS $^{10b}$ . The presence on C-4 of the pyrimidine ring of an amino group seems to orientate preferentially the cyclization xith POCl $_3$  towards the purine, yielding neverthless a small amount of oxazolopyrimidine  $^{9b}$ . On the other hand, the action of acid anhydrides on 5-amino-6-hydroxypyrimidines has been reported to produce the N-acylamino derivative  $^{8a-b}$ . No oxazolopyrimidines have been observed in these reactions, except by Patil et al.  $^{8e}$ . These authors have obtained an oxazolopyrimidine by mixing (EtCO) $_2^{0}$ 0 with 4,6-dihydroxy-5-aminopyrimidine (HCl salt).

In our case, the action of  $Ac_2O$  under reflux on diaminopyrimidines  $\underline{1}$  has led to the formation of a significant amount of oxazolopyrimidines  $\underline{2}$  and several acetylated products. The reactions have been carried out suspending  $\underline{1}$  in  $Ac_2O$  and heating and keeping under reflux for 3 h.  $Ac_2O$  was completely removed by adding methanol and evaporating several times. The resulting solid was fractionated by column cromatography on silicagel, eluting with mixture of EtOAc/EtOH/hexane (2:1:7). The first fraction which was eluted from the reaction mixture obtained from 5-amino-2-methylthio-4-\$\frac{1}{2}-\frac{1}{2}-xylopyranosylamino-6-oxo-pyrimidine (\frac{1}{2}a)^3 corresponds to 2-methyl-5-methylthio-7-(2;3;4-tri-0-acetyl-\beta-\frac{1}{2}-\frac{1}{2}-xylopyranosylamino)-oxazolo(5,4-d) pyrimidine (\frac{2}{2}a), the second one corresponding to 7-acetamido-2-methyl-5-methyl-thio-7-N-(2;3;4-tri-0-acetyl-\beta-\frac{1}{2}-\frac{1}{2}-xylopyranosyl)-oxazolo(5,4-d) pyrimidine (\frac{2}{2}b).

Similarly from 5-amino-2-methylthio-4-  $\beta$ - $\underline{\mathbb{D}}$ -glucopyranosylamino-6-oxo-pyrimidine  $(\underline{\mathbf{1b}})^3$ , the first fraction corresponds to 2-methyl-5-methylthio-7-(2;3;4;6-tetra-0-acetyl- $\beta$ - $\underline{\mathbb{D}}$ -glucopyranosylamino)-oxazolo(5,4-d)pyrimidine  $(\underline{\mathbf{2c}})$ , and the second to 7-acetamido-2-methyl-5-methylthio-7-N-(2;3;4;6-tetra-0-acetyl- $\beta$ - $\underline{\mathbb{D}}$ -glucopyranosyl)-oxazolo(5,4-d)pyrimidine  $(\underline{\mathbf{2d}})$ . Next fractions correspond to diverse acetylated products, but no purines have been detected.

When  ${\rm Ac}_2{\rm O}$  has been removed by pouring the solution over  ${\rm NaHCO}_3{\rm -1ce}$  (and subsequent extraction with  ${\rm CHCl}_3$  several non-glycosidic products, like 7-acetamido-2-methyl-5-methylthio-oxazolo(5,4-d)pyrimidine, have been observed in the mixture, thus indicating that an acetolysis of the glycosidic bond has taken place in some extent. The structural and configurational assignment of  $\underline{2}$  has been made on the basis of high resolution mass spectrometry (exact mass measurement) and  ${}^1{\rm H-nmr}$  data shown in the Scheme and the Table, respectively.

TABLE  $^{1}\text{H-NMR}$  Data of Compounds 2

|           | Me-2      | Me-5 <u>H</u> |                  | <u>Ac</u> -N-7 | Sugar protons    |                     |                     |                     |                     |                          |
|-----------|-----------|---------------|------------------|----------------|------------------|---------------------|---------------------|---------------------|---------------------|--------------------------|
|           |           |               | <u>H</u> N-7     |                | <u>H</u> -1'     | <u>H</u> -21        | <u>H</u> -3'        | <u>H</u> -4'        | <u>H</u> ~51        | <u>H</u> -61             |
| <u>2a</u> | 2.55<br>s | 2.55<br>s     | 6.20<br>d        |                | 5.75<br>pt       | 5.25<br>pq          | 5.00<br>m           | 5.00<br>m           | 4.10<br>pq 5'e      |                          |
|           |           |               | 9Hz              |                |                  |                     |                     |                     | 3.52<br>pt 5'a      |                          |
| <u>2b</u> | 2.66<br>s | 56 2.71<br>s  |                  | 2.14           | 5.90<br>d<br>9Hz | 5.24<br>m           | 5.24<br>m           | 4.98<br>m           | 4.20 5'e            |                          |
|           |           |               |                  |                |                  |                     |                     |                     | 3.50<br>pt 5'a      |                          |
| <u>2c</u> | 2.60<br>s | 2.62<br>s     | 6.30<br>d<br>9Hz |                | 5.80<br>pt       | 5.14<br>pq          | 5.45<br>pt          | 5.14<br>pq          | 3.97<br>wide        | 4.29<br>pq<br>4.12<br>pd |
| <u>2d</u> | 2.67<br>s | 2.67<br>s     |                  | 2.16           | 6.05<br>d<br>9Hz | 5.05-<br>-5.35<br>m | 5.05-<br>-5.35<br>m | 5.05-<br>-5.35<br>m | 3.80-<br>-4.00<br>m | 4.15-<br>-4.30;<br>m     |

a = axial; d = doublet; e = equatorial; m = multiplet; s = singlet;pq = pseudoquadruplet; pt = pseudo-triplet. The observed coupling in the  $^1\text{H-nmr}$  spectra of  $\underline{2a}$  and  $\underline{2c}$  between the anomeric proton (as a pseudo-triplet) and another proton at lower field (exchangeable by D, therefore corresponding to  $\underline{\text{H-N-C}}_7$ ) excludes the possibility of the isomeric purines of the formulated oxazolopyrimidines.

As for 2b and 2d, structures 3 could also account for both mass and nmr data.

Addition of the nmr shift reagent  $\operatorname{Eu(DPM)}_3$  has shifted approximately 0.3 ppm downfield one of the  $-\operatorname{C(0)-CH}_3$  signals, the rest of the acetyl signals remaining almost unchanged. The doublet corresponding to the anomeric proton suffers a similar shift of about 0.5 ppm downfield, strongly suggesting its vicinity to the site of complexation of the Eu chelate. For N- and 0-acetylated polyfunctional molecules, the preferential site of complexation has been reported to be the N-Ac rather than 0-Ac<sup>11</sup>. The formerly mentioned results allow therefore to reject structures 3. As an additional proof, de-acetylation with NaOMe has been performed on 2b and 2d. Protons corresponding to  $H-N-C_7$  (doublets, exchangeable by D) have been observed in the respective  $^1H-nmr$  spectra.

The  $\beta$ -pyranosyl configurations of the sugar moleties have been assigned according to the values of the coupling constants of the anomeric protons ( $J_{1,2}$  = 9 Hz in all cases). For 2a and 2c the respective pseudo-triplets became doublets when  $\underline{H}$ -N-C $_7$  was exchanged by D.

Finally, experiments of double resonance on the 400 MHz  $^1$ H-nmr spectra of  $\underline{2b}$  and  $\underline{2c}$  have allowed the assignment of the rest of the sugar protons.

## **ACKNOWLEDGMENT**

The authors wish to acknowledge the Department of Chemistry of the University of Alberta (Canada) for high resolution mass and nmr spectra.

## REFERENCES

- For Part XV see: R. Asenjo Asenjo, M. Melgarejo Sampedro, M. Nogueras Montiel,
   M. Rodriguez Alonso, C. Rodriguez Melgarejo and A. Sánchez Rodrigo, <u>J. Nucleosides and Nucleotides</u>, In press.
- This paper has been presented, in part, in the III European Symposium in Organic Chemistry (Canterbury, England, Sept. 1983).
- M. Nogueras Montiel, A. Sánchez Rodrigo, R. Asenjo Asenjo, M. Melgarejo
   Sampedro, M. Rodriguez Alonso and C. Rodriguez Melgarejo, <u>An. Quím.</u>, In press.
- 4. J. Baddiley, B. Lythgoe and A. R. Todd, J. Chem. Soc., 1943, 551.
- 5. M. Nogueras Montiel, Ph. D. Thesis, University of Granada (Spain), 1983.
- 6. W. Pfleiderer and E. Bühler, Chem. Ber., 99, 3022 (1966).
- 7. J. P. Ferris and L. E. Orgel, <u>J. Am. Chem. Soc.</u>, <u>88</u> (16), 3829 (1966);
  M. Sekiya, J. Suzuki and Y. Kakiya, <u>Chem. Pharm. Bull.</u>, <u>18</u>, 1233 (1970);
  Y. Ohtsuka and K. Sugimoto, <u>Bull. Chem. Soc. Japan</u>, <u>43</u>, 3305 (1970);
  M. Sekiya and J. Suzuki, <u>Chem. Pharm. Bull.</u>, <u>18</u>, 2242 (1970); Y. Ohtsuka, <u>Bull. Chem. Soc. Japan</u>, <u>43</u>, 3909 (1970).
- a): M. P. V. Boardland and J. F. W. McOmie, <u>J. Chem. Soc.</u>, 4942 (1952); b): E. A. Falco, G. B. Elion and G. H. Hitchings, U. S. 2,807,616 (1957); c): T. Nishiwaki, <u>Nature</u>, 211, 737 (1966); d): T. Nishiwaki, <u>Chem. Pharm. Bull.</u>,
   14, 1425 (1966); e): V. D. Patil and L. B. Townsend, <u>J. Heterocycl. Chem.</u>,
   8, 503 (1971).
- 9. a): T. B. Johnson, Am. Chem. J., 34, 191 (1905); b): E. A. Falco, G. B. Elion, E. Burgi and G. H. Hitchings, J. Am. Chem. Soc., 74, 4897 (1952); c): H. Dounchis, J. Org. Chem., 37, 2583 (1972); d): R. G. Melik-Ogandzhanyan and T. A. Khachaturyan, USSR, 810,699. (Chem. Abstr., 95 (13), 115582v (1981).
- 10. a): K. Senga, J. Sato and S. Nishigaki, <u>Heterocycles</u>, 6, 689 (1977); b): K. Senga, J. Sato, K. Shimizu and S. Nishigaki, <u>Heterocycles</u>, 6, 1919 (1977);
  c): K. Senga, J. Sato and S. Nishigaki, <u>Chem. Pharm. Bull.</u>, 26, 765 (1978).
- 11. R. F. Butterworth, A. G. Pernet and S. Hanessian, Can. J. Chem., 49, 981 (1971).

Received, 16th March, 1984