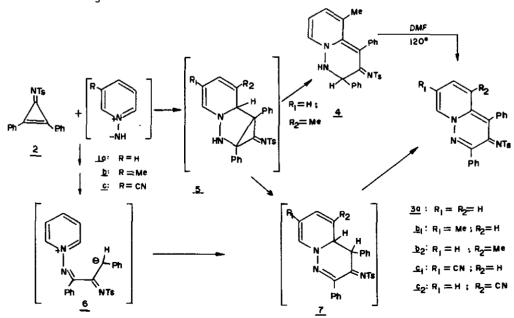
REACTION OF N-p-TOLUENESULFONYLDIPHENYLCYCLO-PROPENIMINE WITH PYRIDINIUM N-IMINES Albert Kascheres*, J. Augusto R. Rodrigues, and Ronaldo Pilli Instituto de Química, Universidade Estadual de Campinas, CP 6154, Campinas, SP, Brasil 13.100


<u>Abstract</u> — Pyridinium N-imines (<u>1</u>) react with N-p-toluenesulfonyldiphenylcyclopropenimine (<u>2</u>) to afford pyridopyridazinimines (3).

A variety of pyridinium N-imines $|N-substituted^{1}$ and N-unsubstituted (la)² have been reported to react with diphenylcyclopropenone, the products in all cases being consistent with a pathway involving initial nucleophilic attack on the cyclopropenone ring with subsequent elimination of pyridine. Recently, we observed³ a similar behavior for N-p-toluenesulfonyldiphenylcyclopropenimine (2) upon reaction with pyridinium N-carboethoxyimine. Our interest in evaluating the dipolarophilic character of small ring systems in reactions with pyridinium ylides prompted a study of the reactivity of 2 with pyridinium N-imines (1). Reaction of 2 with la (formed in situ from the hydriodide and triethylamine)² in methanol or methylene chloride was complete within 24 h at room temperature to yield a cycloadduct assigned structure <u>3a</u> (see Table). Support for this assignment was obtained from the reaction of lb in methylene chloride (2 days) which afforded as the major product a stable intermediate, 4, corresponding to the more sterically hindered regioisomer, in addition to $3b_1$. The pmr spectrum $(DMSO-d_{\kappa})$ of <u>4</u> was particularly informative, containing two broadened lH singlets at δ 6.13 and 8.66. The latter absorption was D₂O exchangeable, while the former sharpened in the process. Dehydrogenation of $\frac{4}{2}$ to $\frac{3b}{2}$ was observed in DMF at 120°C (65% conversion after 1 day). The C-5 methyls of both $\frac{4}{2}$ and $\frac{3b}{2}$ showed the expected diamagnetic anisotropic shielding effect of the C-4 phenyls. Predominant cycloaddition at the more hindered site on a 3-substituted pyridinium Nimine has been observed as a general phenomenon in reactions of ethyl propiolate, regardless of the electron-donating or electron-withdrawing character of the

TABLE	T'/	ΔB	L	Е
-------	-----	----	---	---

Cmpd	Yield (%) ^{a,b} mp (^o C)	IR (KBr, cm^{-1})	¹ H-NMR (TMS _{int.} , ⁸)	$Uv[\lambda_{max} nm(\varepsilon)]$
<u>3a</u>	65 226-227	1638(w),1540,1490, 1453,1430	^C 2.28(s,3H),6.9-7.8(m, 17H), 8.37(d,J=7Hz, H-8)	^f 369(19880) 269(19670)
<u>3b</u> 1	32 230-232	1642(w),1535,1492, 1456,1430	^C 2.24(s,3H),2.30(s,3H), 6.9-7.9(m,16H),8.28 (s,H-8)	^f 371 (22690) 269 (23260)
<u>3b</u> 2	quant. from <u>4</u> 225-226	1643(w),1550,1495, 1463,1430	^C 1.75(s,3H),2.28(s,3H), 6.8-8.1(m,16H),8.45 (d,J=7Hz,H-8)	f ₃₇₀ (21540) 273(23050)
<u>3c</u> 1	55 252-253	2230,1640,1540, 1495,1450	^C 2.32(s,3H),6.9-7.9(m, 16H),8.63(s,H-8)	^g 390(19430) 258(14820)
<u>3c</u> 2	10 301-302	2230,1635(w),1562, 1500,1455	<pre>d 2.43(s,3H),7.1-7.9(m, 14H), 8.30(t,H-7),8.90 (d,H-6),9.60(d,H-8) (all J=7Hz)</pre>	^g 376 (16560) 286 (11674)
4	64 222-224	3060(br),1615,1490, 1465,1445,1420	<pre>e 1.43(s,3H),2.28(s,3H), 6.13(s,br,H-2),6.7-7.6 (m,16H),8.06(d,J=7Hz, H-8),8.66(s,br,H-1)</pre>	^f 349(20576) 297(13112)

a) All products were isolated by means of column chromatography on silica gel: elution with CH_2Cl_2 (3) and 40% ether- CH_2Cl_2 (4). b) All compounds gave satisfactory elemental analyses (± 0.3%). c) $CDCl_3$. d) CF_3CO_2H . e) DMSO-d₆. f) EtoH. g) CH_3CN .

.

substituent.⁴ In the case of 2, reaction with <u>lc</u> (formed <u>in situ</u> from the mesitylenesulfonate and potassium carbonate)⁴ in methylene chloride (12 days) produced both <u>3c₁</u> and <u>3c₂</u>, with a large preference for the former. Such inverse orientation to the sterically less hindered position has been observed in the reaction of <u>lc</u> with 2-phenylazirine.⁵

The formation of $\underline{4}$ provides direct evidence for the participation of $\underline{5}$. However, since a 1,2-dihydro intermediate was isolated in one case only, an alternative pathway to other $\underline{3}$ involving inverse hydrogen transfer in $\underline{5}$ or a step-wise process with participation of $\underline{6}$ to produce a 4,4a-dihydro intermediate ($\underline{7}$) cannot be excluded. In fact, an intermediate analogous to $\underline{7}$, which was observed⁶ in the reaction of $\underline{1a}$ with methylphenylcyclopropenone, suffered dehydrogenation under mild conditions.

The results of the present study demonstrate the continuing utility of pyridinium N-imines $\underline{1}$ as probes for dipolarophilic character of unsaturations contained within small ring systems.

REFERENCES

- 1. T. Sasaki, K. Kanematsu, and A. Kakehi, J. Org. Chem., 1971, 36, 2451.
- 2. A. Kascheres and D. Marchi Jr., J. Org. Chem., 1975, 40, 2985.
- R.A. Pilli, J.A.R. Rodrigues, and A. Kascheres, <u>J. Org. Chem</u>., 1983, <u>48</u>, 1084.
- Y. Tamura, Y. Sumida, Y. Miki, and M. Ikeda, <u>J. Chem. Soc. Perkin I</u>, 1975, 406.
- A. Kakehi, S. Ito, T. Manabe, H. Amano, and Y. Shimaoka, <u>J. Org. Chem.</u>, 1976, <u>41</u>, 2739.
- A. Kascheres, D. Marchi Jr., and J.A.R. Rodrigues, <u>J. Org. Chem</u>., 1978, 43, 2892.

Received, 17th April, 1984