NEW SHORT STEP SYNTHESIS OF 3-HYDROXYETHYL-4-CYANOAZETIDIN-2-ONE DERIVATIVE: A POTENTIAL PRECURSOR OF THE PENEMS AND THE CARBAPENEMS

Masao Shiozaki*, Hiroshi Maruyama and Noboru Ishida Chemical Research Laboratories, Sankyo Co., Ltd. Hiromachi 1-2-58, Shinagawa-ku, Tokyo 140, Japan

<u>Abstract</u> - 3-Hydroxyethyl-4-cyanoazetidin-2-one derivative was synthesized from (2R, 3R)-2,3-epoxybutyric acid in two steps.

For the past few years, we have been investigating the synthetic opportunities for analogues of thienamycin. 1 3-tert-Butyldimethylsilyloxyethyl-4-cyanoazetidin-2-one (6) is a potential precursor of the penems and the carbapenems. The synthesis of this compound from penicillin and its further conversion to isopenam derivative had already been reported. 2 Since the synthesis of this compound from penicillin needed numerous steps, we attempted a short step synthesis of this compound, and here we wish to report our successful results. Condensation of (2R,3R)-2,3-epoxybutyric acid $(1)^3$ and p-methoxybenzylaminoaceto-

Condensation of (2R,3R)-2,3-epoxybutyric acid $(\underline{1})^3$ and \underline{p} -methoxybenzylaminoacetonitrile $(\underline{2})^4$ by use of dicyclohexylcarbodiimide as a condensing reagent gave an epoxyamide $(\underline{3})$ in 51% yield in addition to the starting amine (34%). Treatment of $\underline{3}$ with 1.1 equivalents of lithium hexamethyldisilazide in tetrahydrofuran at $10-20^{\circ}\text{C}$ for 1 min after dropwise addition during a period of 10 min gave the trans azetidin-2-one⁵ $(\underline{4}, 51\% \text{ yield})$ as a crystalline solid: mp $80-82^{\circ}\text{C}$: $[\alpha]_{D}^{24}$ -29.5° (c=1.93, EtOH), and cis-isomer⁶ $(\underline{4}^{\circ}, 22\% \text{ yield})$ as a crystalline solid: mp $86-88^{\circ}\text{C}$. Protection of the hydroxy group of $\underline{4}$ with the the bume solid: mp $80-88^{\circ}\text{C}$ group gave $\underline{5}$ in 69% yield as an oil. Deprotection of the methoxybenzyl group of $\underline{5}$ by $(28-8)^{\circ}\text{C} + (28-8)^{\circ}\text{C} + ($

Thus, we could obtain 3-hydroxyethyl-4-cyanoazetidin-2-one derivative with the desired stereochemistry in few steps.

Scheme 1.

- 4. $R^1 = H$, $R^2 = PMB$
- $5. R^1 = SiMe_2Bu^t, R^2 = PMB$
- $\underline{6}$. $R^1 \approx SiMe_2 Bu^t$, $R^2 = H$

PMB = p-methoxybenzyl

REFERENCES

- 1. M. Shiozaki, N. Ishida, T. Hiraoka and H. Maruyama, Tetrahedron, in press.
- 2. K. Hirai, Y. Iwano and K. Fujimoto, Tetrahedron Letters, 1982, 23, 4025.
- 3. H. Shimazaki, Nippon-Kagaku Zasshi, 1966, 87, 459.
- 4. This amine (2) is easily prepared from bromoacetonitrile and p-methoxybenzylamine in THF by use of Et₃N as a base.
- 5. ¹H NMR (60 MHz, CDCl₃, 6) of <u>4</u>: 1.25 (3H, d, J=6 Hz), 2.29 (1H, d, J=4.5 Hz, OH), 3.54 (1H, dd, J=2.5, 4 Hz), 3.88 (3H, s), 4.05, 4.69 (2H, AB-q, J=15 Hz), 4.07 (1H, d, J=2.5 Hz), 4.20 (1H, m), 6.87 (2H, d, J=8.5 Hz), 7.20 (2H, d, J=8.5 Hz).
- 6. ¹H NMR (60 MHz, CDCl₃, 6) of <u>4'</u>: 1.40 (3H, d, J=6 Hz), 2.94 (1H, bs, OH), 3.38 (1H, dd, J=5.5, 9 Hz), 3.77 (3H, s), 4.06, 4.66 (2H, AB-q, J=15 Hz), 4.09 (1H, d, J=5.5 Hz), 4.22 (1H, m), 6.86 (2H, d, J=9 Hz), 7.19 (2H, d, J=9 Hz).
- 7. cf. W.F. Huffman, K.G. Holden, T.F. Buckley, III, J.G. Gleason and L. Wu, J. Am. Chem. Soc., 1977, 99, 2352.

Received, 1st May, 1984