SYNTHESIS OF 3-HYDROXYETHYL-4-OXOAZETIDIN-2-YLPHOSPHONATE DERIVATIVES: POTENTIAL PRECURSORS TO CARBAPENEM AND α -AMINOPHOSPHONIC ACID DERIVATIVES

Masao Shiozaki and Hidekazu Masuko Chemical Research Laboratories, Sankyo Co., Ltd. Hiromachi 1-2-58, Shinagawa-ku, Tokyo 140, Japan

<u>Abstract</u> - Optically active 3-hydroxyethyl-4-oxoazetidin-2-ylphosphonate derivatives were synthesized.

4-Oxoazetidin-2-ylphosphonate derivatives, which should be potential precursors to the carbapenems, obtained from treatment of the corresponding 4-acetoxyazetidin-2-one derivatives with trialkyl phosphites have already been reported by Campbell as the starting material of alanyl dipeptide containing organophosphorous moiety via β-phosphono-β-alanine derivatives. Such organophosphorous-containing molecules as the α-aminophosphonic acid dipeptide (for example: alaphosphine - an inhibitor of alanine racemase) are becoming increasingly important for pharmaceutical use. In this paper we wish to describe a new synthetic procedure for 4-oxoazetidin-2-ylphosphonate derivative by the ring closure of 2-bromo-3-hydroxybutyramides via the corresponding 2,3-epoxybutyramides which possess an activated methylene adjoining the amide nitrogen.

The starting phosphorous-containing butyramides were synthesized as follows: Treatment of anisidine or p-methoxybenzylamine with paraformaldehyde according to the procedure reported by Ratcliffe et al. 2 gave hexahydrotriazines, <u>la</u> (72%; mp 128-130° C) or <u>lb</u> (95%; mp 113-115°C). Reaction of the hexahydrotriazines (<u>la</u> and <u>lb</u>) with diethyl phosphite at 100°C for 4-6 h gave secondery amines (<u>2a</u>, 61% and <u>2b</u>, 65%). Amide formation reaction of the amines (<u>2a</u> and <u>2b</u>) with 1 eq of (2S,3R)-2-bromo-3-hydroxybutyric acid (<u>3</u>) 3 in THF in the presence of 1 eq of DCC gave <u>4a</u> (21%) and <u>4b</u> (77%).

Next, these phosphorous-containing butyramides were cyclized to β -lactams in a stereospecific manner. Treatment of $\underline{4a}$ and $\underline{4b}$ with 1 eq of lithium hexamethyldisi-lazide in THF at ice-cooling temperature for 5 min, and then another 1 eq of LiN(SiMe₃)₂ at 24°C gave chiral diethyl 3-hydroxyethyl-4-oxoazetidin-2-ylphosphonate derivatives, $\underline{5a}$ (61%) and $\underline{5b}$ (37%), and \underline{cis} -isomers were not isolated. Protection of the hydroxy group of 5a with p-nitrobenzylchloroformate by use of 4-dimethylamino-

pyridine as a base in CH_2Cl_2 gave $\underline{6a}$ (79%) as a foam. Deprotection of the methoxyphenyl group of $\underline{6a}$ with 3 eq of cerium (IV) ammonium nitrite (CAN) in acetone- H_2O (3:2) gave $\underline{7A}$ (81%) as a crystalline solid; mp 74-76°C. Hydrogenolysis of $\underline{7A}$ with 5% Pd- C/H_2 at room temperature gave $\underline{7C}$ (92%); mp 70-71°C; $[\alpha]_D^{24}$ -4.9° (c=0.59, $CHCl_3$). Similarly, protection of the hydroxy group of $\underline{5b}$ with \underline{t} -butyldimethylsilyl chloride by use of 4-dimethylaminopyridine as a base in DMF gave $\underline{6b}$ (67%). Deprotection of the methoxybenzyl group of $\underline{6b}$ with $K_2S_2O_8$ - K_2HPO_4 in MeCN- H_2O (1:1) at 70-75°C under argon for 30 min gave N-free $\underline{6}$ -lactam $\underline{7B}$ (57%) as a gum. These compounds ($\underline{5a}$, \underline{b} , $\underline{6a}$, \underline{b} and $\underline{7A}$, \underline{B} , \underline{C}) should be potential precursors to new carbapenems and α -aminophosphonic acid analogues of aspartic acid.

$$RNH_{2} + (HCHO)_{n} \longrightarrow R^{N} \xrightarrow{R} (EtO)_{2}P(O)H \xrightarrow{P} (OEt)_{2} \xrightarrow{3} DCC$$

a: R=p-Methoxyphenylb: R=p-Methoxybenzyl

1a 1b 2a 2h

REFERENCE

- 1. M. M. Campbell and N. Carruthers, J. Chem. Soc., Chem. Commun., 1980, 730.
- 2. R. W. Ratcliffe and B. G. Christensen, Tetrahedron Letters, 1973, 4645.
- 3. Y. Shimohigashi, M. Waki and N. Izumiya, Bull. Chem. Soc. Japan, 1979, 52, 949.
- 4. M. Shiozaki, N. Ishida, T. Hiraoka and H. Maruyama, <u>Tetrahedron</u> <u>Letters</u>, 1981, 5205.

Received, 1st May, 1984