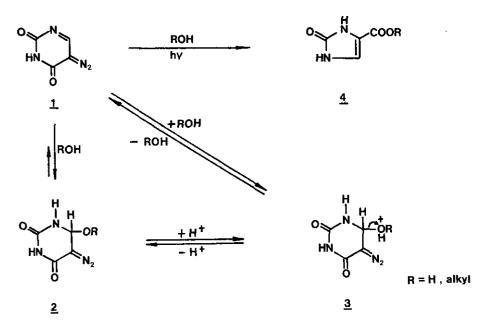
PHOTOCHEMICAL WOLFF REARRANGEMENT OF 5-DIAZO-6-PHENYLURACIL IN NEUTRAL SOLUTIONS. THE SYNTHESIS OF ALKYL 5-PHENYL-2-OXO-4-IMIDAZOLINE-4-CARBOXYLIC ACID DERIVATIVES

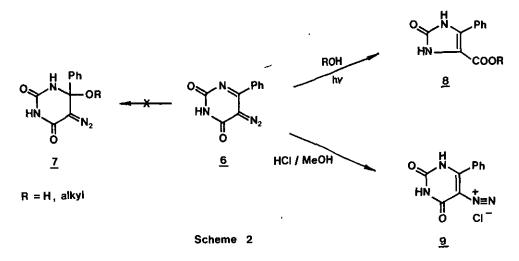
Wilhelm Klötzer^{*} and Gerhard Dörler Institute of Organic and Pharmaceutical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria and


Branko Stanovnik and Miha Tišler Department of Chemistry, E.Kardelj University of Ljubljana 61000 Ljubljana, Yugoslavia

<u>Abstract</u> - A photochemical Wolff rearrangement of 5-diazo-6-phenyluracil (<u>6</u>), the compound which does not form the corresponding hydrate or alcohol adducts, into alkyl 5-phenyl-2oxo-4-imidazoline-4-carboxylic acid derivatives <u>8a-h</u> in neutral solutions is described.

Since the Süss's first report¹, a number of heterocyclic carboxylic acid derivatives has been prepared from heterocyclic a-diazo ketones² either by thermal or photochemical Wolff rearrangement³. Recently, indole-3-carboxylic acid derivatives⁴⁻⁶, 6-substituted pyrazolo/3,2-c/-s-triazolo-7-carboxylates⁷ and 5-hydroxy-1-phenylpyrazole carboxylates^{8,9} in neutral solutions, and 2-oxo-4-imidazoline-4-carboxylic acid derivatives¹⁰ and methyl 1,3-dimethyl-2-oxo-4-imidazoline-4carboxylate¹¹ in strongly acidic solutions have been described¹².

As a continuation of our studies in this area we report a photochemical Wolff rearrangement of 5-diazo-6-phenyluracil ($\underline{6}$) into 5-phenyl-2-oxo-4-imidazoline-4- carboxylic acid derivatives ($\underline{8a-h}$).


5-Diazouracil (<u>1</u>) and its adducts <u>2</u> have been thermally converted into 1,2,3triazole-4-carboxylic acid derivatives^{13,14}. On the other hand, the photochemical transformation into 2-oxo-4-imidazoline-4-carboxylic acid derivatives⁴ in neutral solutions is not possible due to the great stability of 5-diazouracil-alcohol adducts <u>2</u>. However, the photochemical Wolff rearrangement could be achieved in solutions saturated with dry hydrogen chloride¹⁰. The explanation for this phenomenon is that 5-diazouracil (1), which exists in neutral solutions entirely in the form of the hydrate or the corresponding alcohol adduct $\underline{2}$, is in strongly acidic solutions, due to protonation followed by elimination of water from the protonated form of the alcohol adduct $\underline{3}$, in equilibrium with the free diazo compound $\underline{1}$. This undergoes the photochemical Wolff rearrangement to give 2-oxo-4-imidazoline-4-carboxylic acid derivatives $\underline{4}$ (Scheme 1).

In order to test this hypothesis, a search for a properly 6-substituted 5-diazouracil, which can not form the corresponding hydrate or alcohol adducts, has been carried out. In this connection, 5-diazo-6-phenyluracil <u>6</u> was found as an example, which fulfills this requirement. Indeed, the irradiation of <u>6</u> in aqueous acetic acid afforded the corresponding 5-phenyl-2-oxo-4-imidazoline-4-carboxylic acid <u>8a</u>, while by irradiation of the compound <u>6</u> in alcohol in neutral solution the corresponding esters <u>8b-h</u> were smoothly formed for a few hours in practically quantitative yields.

Unlike the unsubstituted 5-diazouracil the 6-phenyl derivative $\underline{6}$ is soluble in diluted aqueous hydrochloric acid and forms an isolable, though labile, hydrochloride. The ir spectrum of this salt displays a band at shorter wavelenght which is consistent with an N=N triple bond¹⁵ in the diazonium salt $\underline{9}$. (Scheme 2).

EXPERIMENTAL

Melting points were determined on a Kofler hot plate mp apparatus. ¹H nmr spectra recorded on a JEOL JNM C-60HL spectrometer (TMS as internal standard, δ -values in ppm), mass spectra on a Hitachi-Perkin-Elmer RMU-6L instrument, and ir spectra on a Perkin-Elmer 727B instrument. Elemental analyses (C, H, N) were obtained on a Perkin-Elmer CHN Analyser 240 C.

5-Diazo-6-phenyltetrahydropyrimidine-2,4-dione (5-Diazo-6-phenyluracil) (6)

Sodium nitrite (1.9 g, 0.0275 mole) dissolved in water (10 ml) was added during 15 min to a stirred solution of 5-amino-6-phenyluracil¹⁶ (5.1 g, 0.025 mole) in hydrochloric acid (2N, 50 ml) at -3° C. After additional 15 min the solution was adjusted to pH 5-6 with solid sodium acetate. The resulting precipitate was isolated, washed with cold water (15 ml) and dried. Recrystallisation from methanol yielded 4.8 g (89%) of <u>6</u>, mp 196-200°C, ir (KBr) 2140 ($C=\bar{N}=\bar{N}$), 1750 cm⁻¹ (C=O). ¹H nmr (DMSO-d₆) & 7.3-7.9 (m, 5H, Ar-H), 11.56 (s, 1H exchangeable, 3-H). According to the ¹H nmr spectrum no trace of the methanol adducts <u>7</u> could be detected after repeated recrystallisation from methanol. Anal.,Calcd. for C₁₀H₆N₄O₂: C, 56.08; H, 2.82; N 26.16. Found: C, 56.20;

H, 3.12; N, 25.98.

Dissolving $\underline{6}$ in anhydrous methanolic hydrochloric acid followed by precipitation with anhydrous ether provided a colorless, water-soluble salt which slowly looses

Product	R	Yield/%/ ^{a)} (solvent for	m.p. / ^o C/	Molecular formula	Analysis			
		recrystallization)				c ,	Н	N
<u>8a</u>	Н	79 (H ₂ O)	285-7	C ₁₀ ^H 8 ^N 2 ^O 3	Calcd	58.82	3.95	13.72
		-		(204,18)	Found	58.76	4.07	13.53
<u>8b</u>	СНЗ	76 (MeOH:H ₂ O 1:1)	242-3	^C 11 ^H 10 ^N 2 ^O 3	Calcd	60.64	4.62	12.84
	2	-		(218.2)	Found	60.70	4.58	12.96
<u>8c</u>	с ₂ н ₅	70 (EtOH:H ₂ O 2:1)	235-7	C ₁₂ ^H 12 ^N 2 ^O 3	Calcd	62.06	5.21	12.06
		-		(232.2)	Found	62.00	5.20	12.28
8 <u>d</u>	n-C ₃ H ₇	84 (MeOH)	222-3	C ₁₃ H ₁₄ N ₂ O ₃	Calcd	63.40	5.73	11.38
	<i></i>			(246.3)	Found	63.21	5.44	11.63
<u>8e</u>	i-C ₃ H ₇	80 (MeOH:H ₂ O 1:1)	218-20	C ₁₃ H ₁₄ N ₂ O ₃	Calcd	63.40	5.73	11.38
				(246.3)	Found	63.49	5.72	11.68
<u>8f</u>	n-C ₄ H ₉	68 (EtOH:H ₂ O 1:1)	185-7	C ₁₄ ^H 16 ^N 2 ^O 3	Calcd	64.60	6.20	10.76
	49	2		(260.3)	Found	64.53	5.83	10.72
<u>8g</u>	(СН ₃) ₂ СЬСН ₂	64 (EtOH:H ₂ O l:1)	228-30	C ₁₄ ^H 16 ^N 2 ^O 3	Calcd	64.60	6.20	10.76
				(260.3)	Found	64.53	6.42	10.72
<u>8h</u>	t-C,H,	92 (EtOH:H ₂ 0 1:1)	266-7	C ₁₄ ^H 16 ^N 2 ^O 3	Calcd	64.60	6,20	10.76
	49	2		(160.3)	Found	64.24	6.39	10.73

-

1

Table I. Alkyl 5-Phenyl-2-oxo-4-imidazoline-4-carboxylic Acid Derivatives $(\underline{8})$

a) Yields of purified products are given

Product	$\gamma_{C=0}^{IR}$	M. S.	¹ Η NMR (CD ₃ OD) δ ppm			
	/cm-1/	M.S. m/e M ⁺	R	Ph	NH	J Hz]
<u>8a</u>	1715 1660	204	5.2(br.s)	7.45-7.65 (m)	5.2(br.s)	
<u>8b</u>	1720 1650	218	3.50(s,CH ₃)	7.45-7.55 (m)	4.75 (br.s)	
<u>8c</u>	1715 1650	232	1.0(t,CH ₂ <u>CH</u> 3) 3.70(q, <u>CH</u> 2 ^{CH} 3)	7.25-7.60(m)	4.70(br.s)	^J Сн ₂ Сн ₃ =6.5
<u>8d</u>	1700 1650	246	0.90(t,CH ₃) 1.80(deg tq CH ₂ CH ₂ CH ₃) 3.70(t, <u>CH</u> 2CH ₂ CH ₃)	7.40-7.60 (m)	4.80(br.s)	J _{CH2} CH3 ^{=6.5} J _{CH2} CH3 ^{=6.0}
<u>8e</u>	1700 1655	246	0.95(d,CH ₃) 4.15 m,C <u>H</u> (CH ₃) ₂	7.40-7.60(m)	4.80(br.s)	^J Сн ₂ Сн ₃ =6.0
<u>8f</u>	1705 1655	260	0.90 t, (CH ₂) $_{3}$ CH ₃) 1.90 m, CH ₂ CH ₂ CH ₂ CH ₃ 4.20 t, CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	7.40-7.55 (m)	4.80(br.s)	J _{CH2} CH3 =6.5 J _{CH2} CH3 =6.0 J _{CH2} CH2
<u>89</u>	1700 1660	260	0.75(s,CH ₃) 1.90 m,CH ₂ CH(CH ₃) ₂ 3.50 d,CH ₂ CH(CH ₃) ₂	7.40-7.55 (m)	4.75(br.s)	J _{CHCH3} = =J _{CHCH2} =6.0
<u>8h</u>	1700 1655	260	1.05(s,CH ₃)	7.45-7.65 (m)	4.75(br.s)	······································

Table II.	Spectroscopic Data	for Alkyl	5-Phenyl-2-oxo-4-imidazoline-4-carboxylic Acid Derivatives (8)	
-----------	--------------------	-----------	--	--

÷

HCl on storage in a vacuum desiccator to yield the free compound <u>6</u> again. The freshly prepared hydrochloride salt <u>9</u> showed a weak ir band (KBr) at 2140 cm⁻¹ $(C=\bar{N}=\bar{N})$ for the already formed free compound <u>6</u> and a strong band at 2190 cm⁻¹ $(C-\bar{N}=N)$ for the diazonium salt <u>9</u>.

<u>5-Phenyl-2-oxo-4-imidazoline-4-carboxylic acid</u> (<u>8a</u>).- 5-Diazo-6-phenyluracil (<u>6</u>) (107 mg, 0.0005 mole) was dissolved in glacial acetic acid (2 ml) and diluted with water (18 ml). The resulting solution was irradiated in guarz tube at 300 nm in a Rayonet photochemical reactor RPR 100 until the evolution of nitrogen ceased (approx. 8 h). The mixture was evaporated in vacuo to give the crude acid <u>8a</u> in practically quantitative yield. The experimental details and other data are given in the Tables I and II.

Preparation of alkyl 5-phenyl-2-oxo-4-imidazoline-4-carboxylates (8b-h). General procedure.

A solution of 5-diazo-6-phenyluracil ($\underline{6}$) (107 mg, 0.0005 mole) in the corresponding alcohol (15 ml) in guarz tube was irradiated at 300 nm in a Rayonet photochemical reactor RPR 100 until the evolution of nitrogen ceased (8-12 h). The reaction mixture was evaporated in vacuo and the solid residue was recrystallized from an appropriate solvent to give esters <u>8b-h</u>. The yields of crude products are practically quantitative. Analytical and spectroscopic data and other experimental details are given in the Tables I and II.

REFERENCES

- 1. O.Süss, Ann., 1953, 579, 135.
- 2. For a review see: M.Tišler and B.Stanovnik, Heterocycles, 1976, 4, 1115.
- 3. For reviews of the Wolff rearrangement see:
 - a) Kirmse, "Carbene, Carbenoide und Carbenanaloge". Verlag Chemie, Weinheim, 1969, p. 166.
 - b) M.Jones and R.A.Moss, "Carbenes", J.Wiley and Sons, New York, 1973, p. 117.

- 4. B.Stanovnik, M.Tišler, and J.T.Carlock, Synthesis, 1976, 755.
- J.T.Carlock, J.S.Bradshaw, B.Stanovnik, and M.Tišler, <u>J.Org.Chem</u>., 1972, <u>42</u> 1883.
- J.T.Carlock, J.S.Bradshaw, B.Stanovnik, and M.Tišler, <u>J.Heterocyclic Chem</u>., 1977, 14, 519.
- B.Stanovnik, M.Tišler, B.Kirn, and I.Kovač, <u>J.Heterocyclic Chem</u>., 1979, 16, 195.
- 8. Ger.pat. 1, 133, 386; Chem.Abstr., 1962, 57, P 13765e (1962).
- B.Stanovnik, M.Tišler, J.Bradač, B.Budič, B.Koren, and B. Mozetič-Reščič, <u>Heterocycles</u>, 1979, 12, 457.
- 10. B.Stanovnik, M.Tišler, and E.Vončina, Heterocycles, 1979, 12, 761.
- 11. B.Stanovnik, M.Prhavc, B.Koren, and M.Tišler, <u>Vestn.Slov.Kem.Drus</u>., 1983, 30, 459.
- For a review see: B.Stanovnik, <u>Rad Jugosl.akad.znan. 1 umet.</u>, <u>kem</u>., 1983, 2, 163.
- 13. S.Romani and W.Klötzer, J.Heterocyclic Chem., 1978, 15, 1349.
- 14. T.C.Thurber and L.B.Townsend, <u>J.Org.Chem.</u>, 1976, <u>41</u>, 1041, and references cited therein.
- 15. M.Regitz, "Diazoalkane", Georg Thieme Verlag, Stuttgart 1977, p. 21.
- 16. P.Bamberg, P.Hemmerich, and H.Erlenmeyer, <u>Helv.Chim.Acta</u>, 1960, 43, 395.

Received, 9th April, 1984