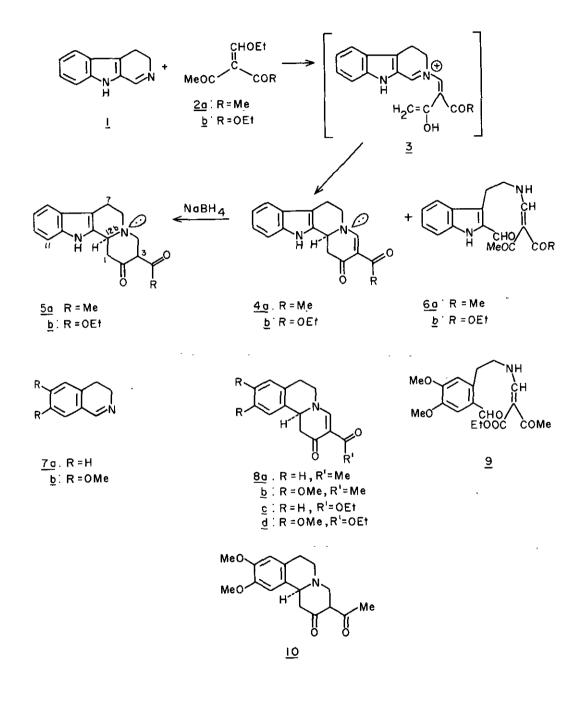
A CONVENIENT METHOD FOR THE PREPARATION OF 3-ACETYL-1,2,3,4,6,7,12,12b-OCTAHYDROINDOLO 2,3-a _ QUINOLIZIN-2-ONE, A KEY INTERMEDIATE FOR THE SYNTHESIS OF AJMALICINE

Bhim C. Maıti and Satyesh C. Pakrashi*


Indian Institute of Chemical Biology, Calcutta-700 032, INDIA <u>Abstract</u> - Reaction of 3,4-dihydro- β -carboline (<u>1</u>) and 3,4-dihydroisoquinoline (<u>7a-b</u>) with ethoxymethyleneacetylacetone (<u>2a</u>) and ethyl ethoxymethyleneacetoacetate (<u>2b</u>) yielded new tetra- and tricyclic compounds (<u>4a-b</u>, <u>8a-d</u>). The enaminone <u>4a</u> on NaBH₄ reduction led to the title compound.

In connection with our programme of synthesis of some indole alkaloids with <u>trans</u>-quinolizine ring system, we required a convenient method for the preparation of 3-acetyl-1,2,3,4,6,7,12,12b-octahydroindolo/2,3-a/quinolizin-2-one (5a), a key intermediate for the synthesis of ajmalicine¹ and a number of other heterocyclic bases. Herein we report an efficient two-step procedure to obtain 5a which has been prepared earlier² through a multi-step process with low overall yield.

Michael addition of 3,4-dihydro- β -carboline (<u>1</u>)³ with ethoxymethyleneacetylacetone (<u>2a</u>)⁴ or ethyl ethoxymethyleneacetoacetate (<u>2b</u>) in ethanol at room temparature afforded the tetracyclic products (<u>4a</u> or <u>4b</u>) directly in <u>ca</u>. 90% yield. The attempted hydrogenation of the enaminone (<u>4a</u>) or of its perchlorate under different conditions furnished only a small amount (<u>ca</u>. 5-8%) of the desired dione (<u>5a</u>)⁵. The reduction could, however, be brought about with NaBH₄ in excellent yield. The α -axial orientation of 12b-H in <u>5a</u> was supported from the observed (i) Bohlmann bands (sharp signals) in its i.r. spectrum and (ii) double doublet with <u>J</u> = 15.5 and 5.5 Hz for 12b-H in the n.m.r. spectrum of 4a.

We extended this method to the condensation of 3,4-dihydroisoquinolines $(\underline{7a-b})$ with β -keto-ethoxymethylene derivatives $(\underline{2a-b})$ to ascertain its general applicability. New tricyclic compounds $(\underline{8a-d})$ could indeed be obtained in high yields (Table 1). Thus reduction of $\underline{8b}$ with NaEH₄ gave $\underline{10}$ in 81% yield.

That the formation of <u>4</u> proceeds <u>via</u> the intermediacy of <u>3</u> became apparent from the isolation of the hitherto unknown indole-2-aldehyde derivatives (<u>6a-b</u>) as

Compd.	Yield (%)	m.p.∠ ^{−o} c_7 ^a	Mol. formula ^b	¹ _{H NMR} ^C δ (ppm)
4a	90	316-317(A)	^C 17 ^H 16 ^N 2 ^O 2	2.34(s,3H), 2.58(d,1H), 2.80-3.12 (m,3H), 3.46-3.82(m,1H), 4.16-4.42 (m,1H), 5.16(dd,1H), 6.90-7.56 (m,5H) and 8.48(brs,1H).
4b	88	305-306 (A)	C ₁₈ H ₁₈ N ₂ O ₃	1.18(t,3H), 2.52(m,2E), 2.88(m,2H), 3.64(m,1H), 4.08(q,2H), 4.32(m,1H), 5.10(dd,1H), 6.96-7.54(m,4H), 8.40(brs,1H) and 8.96(br,1H).
5a ^{d,e}	86	212-213 (в)	C ₁₇ H ₁₈ N ₂ O ₂	2.16(s,3H), 2.24-3.88(m,9H), 7.02-7.60(m,4H), 7.74(br,1H) and 15.60(s,1H).
5b ^{d,£}	78	165–166(B)	^C 18 ^H 20 ^N 2 ^O 3	1.30(t,3H), 2.48-3.86(m,9H), 4.26 (q,2H), 7.04-7.60(m,4H), 7.78 (br,1H) and $12.02(s,1H)$.
6a	4	220 (A)	^C 17 ^H 18 ^N 2 ^O 3	1.84 (s, 3H), 2.18 (s, 3H), 3.20-3, 52 (m, 2H), 3.64 (t, 2H), 6.94-7.90 (m, 5H), 9.90 (s, 1H), 10.70 (m, 1H) and 11.66 (brs, 1H).
65	7	166 (C)	^C 18 ^H 20 ^N 2 ^O 4	1.07(t,3H), 2.27(s,3H), 3.16-3.56 (m,2H), 3.63(t,2H), 3.97(q,2H), 6.99-7.90(m,5H), 9.87(s,1H), 10.83(m,1H) and 11.66(brs,1H).
8a	81	158-159(C)	C ₁₅ ^H 15 ^{NO} 2	2.54 (s, 3H), $2.67 (d, 1H)$, $2.81 (d, 1H)$, 2.92-4.04 (m, 4H), $4.94 (dd, 1H)$, 7.00-7.56 (m, 4H) and $8.42 (brs, 1H)$.
8b	85	196–197 (C)	C ₁₇ ^H 19 ^{NO} 4	2.52(s,3H), 2.54-3.84(m,6H), 3.85 (s,3H), 3.87(s,3H), 4.86(dd,1H), 6.60(s,1H), 6.67(s,1H) and 8.39(brs,1H).
8c	75	154 (C)	C ₁₆ H ₁₇ NO ₃	1.32(t,3H), 2.43-4.10(m,6H), 4.29 (q,2H), 4.94(dd,1H), 6.90-7.58 (m,4H) and 8.34(brs,1H).
8d	79	194 (C)	^C 18 ^H 21 ^{NO} 5	1.32(t,3H), 2.40-4.06(m,6H), 3.86 (s,3H), 3.90(s,3H), 4.28(q,2H), 4.88(dd,1H), 6.62(s,1H), 6.67 (s,1H) and 8.30(brs,1H).
9	5	108 (C)	^C 18 ^H 23 ^{NO} 6	1.26(t,3H), 2.44(s,3H), 3.28(t,2H), 3.48(t,2H), 3.90(s,3H), 3.92(s,3H), 4.16(q,2H), 6.66(s,1H), 7.30(s,1H), 7.79(d,1H), 10.00(s,1H) and 10.48(m,1H).
10 ^d	81	177-178 (C)	^C 17 ^H 21 ^{NO} 4	2.12(s,3H), 2.32-3.80(m,9H), 3.82 (s,3H), 3.84(s,3H), 6.56(s,1H), 6.58(s,1H) and 15.56(s,1H).

Table 1. Physical data of compounds (4-10)

^aRecrystallisation solvent; A: ethanol; B: methanol; C: chloroform-petroleum ether; ^bAll compounds gave satisfactory microanalyses; ^CSolvent d₆ DMSO for <u>4a-b</u> and CDCl₃ for <u>5-10</u>; ^dCompounds <u>5b-c</u> and <u>10</u> exist, in solution, as the enol tautomers; ^elit.² mp 205-206^o; ^flit.⁶ mp 164-165^o. minor products (4-7%) when the condensation was carried out in the aqueous rather than in absolute ethanol. The aldehyde <u>9</u> obtained under the same condition from <u>8d</u> implied that similar mechanism operates in the isoquinoline series as well.

Since ethoxymethyleneacetylacetone or ethyl ethoxymethyleneacetoacetate can also be readily prepared, the above method provides a useful synthetic route for β -carboline or benzoquinolizidine bases.

EXPER IMENTAL

Mps are uncorrected. ¹H NMR spectra were recorded on a Jeol FX-100 FT NMR spectrometer using TMS as internal standard and mass spectra (EI) on a Hitachi RMU-6L instrument.

General procedure for a synthesis of <u>4</u> and <u>8</u>. Typically 3,4-dihydro- β -carboline (1.5 g, 0.03 mole) in dry ethanol (250 ml) was stirred under N₂ and a solution of ethoxymethyleneacetylacetone (5.45 g, 0.035 mole) in dry ethanol (50 ml) was added slowly. The solid separated after 4 h was filtered and crystallised to furnish <u>4a</u>.

In cases of isoquinolines a reflux temperature for 4 h was maintained and the products were purified by short column chromatography (silica gel).

<u>NaBH₄</u> reduction of enaminone <u>4</u> and <u>8b</u>. NaBH₄ (3 x 50 mg) was added at an interval cf 2 h to a solution of enaminone (5 mmole) in ethanol (300 ml) and the reaction mixture was stirred and monitored (tlc) for a total period of 6 h. Usual work up followed by crystallisation yielded the saturated dione.

REFERENCES AND NOTES

- E. Winterfeldt, A. J. Gaskell, T. Korth, H.-E. Radunz and M. Walkowiak, <u>Chem. Ber</u>., 1969, <u>102</u>, 3558.
- 2. K. B. Prasad and G. A. Swan, J. Chem. Soc., 1958, 2045.
- 3. N. Whittaker, <u>J. Chem. Soc</u>., 1969, 85.
- 4. L. Crombie, D. E. Games and A. W. G. James, <u>J. Chem. Soc. Perkin I</u>, 1979, 464.
- 5. The difficulty in the hydrogenation of enaminones either under normal or forcing conditions have also been reported by earlier workers (J. V. Greenhill, <u>Chem.</u> <u>Soc. Rev.</u>, 1977, <u>6</u>, 277; N. K. Kochetkov, <u>Bull. Akad. Sci. USSR Div. Chem. Sci.</u>, 1954, 37; J. C. Martin, K. R. Barton, P. G. Gott, and R. H. Meen, <u>J. Org. Chem.</u>, 1966, <u>31</u>, 943; J. V. Greenhill, M. Ramli and T. Tomassini, <u>J. Chem. Soc. Perkin I</u>, 1975, 588).
- 6. G. B. Kline, J. Am. Chem. Soc., 1959, 81, 2251.

Received, 4th May, 1984