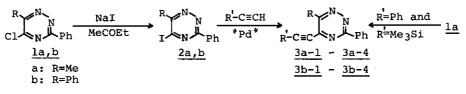
STUDIES ON <u>as</u>-TRIAZINE DERIVATIVES. V.<sup>1</sup> SYNTHESIS AND HYDRATION OF ALKYNYL-1,2,4-TRIAZINES

Shoetsu Konno, Satoshi Fujimura, and Hiroshi Yamanaka\* Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan

<u>Abstracts</u> — Palladium catalyzed cross-coupling reaction of 3- and 5-iodo-<u>as</u>-triazines with monosubstituted acetylenes gave the corresponding alkynyl-<u>as</u>-triazines in good yields. The hydration of 3- and 5-trimethylsilylethynyl-<u>as</u>-triazines thus obtained in the presence of mercuric sulfate afforded 3- and 5acetyl-<u>as</u>-triazines, whereas the reaction of the other alkynyl-<u>as</u>-triazines with piperidine followed by the hydrolysis of the resulting enamines gave the acylmethyl-<u>as</u>-triazines, as expected.

It is well known that the palladium catalyzed cross-coupling reaction of aryl halides with monosubstituted acetylenes, which was reported by Sonogashira, et al.,<sup>2</sup> is conveniently applied to the synthesis of diazine derivatives from the corresponding heteroaromatic halides.<sup>3,4</sup> As an extensive work of the above reaction, we describe the reaction of several halo-1,2,4-triazines (<u>as</u>-triazines), together with the hydration of the resulting alkynyl-as-triazines.

Firstly, the reaction of 5-chloro-6-methyl-3-phenyl-<u>as</u>-triazine (<u>la</u>) was compared with that of 5-iodo-6-methyl-3-phenyl-<u>as</u>-triazine (<u>2a</u>). As shown in Table I, the iodide (<u>2a</u>) was concluded to be better starting material than the chloride (<u>1a</u>), though <u>2a</u>, mp 99-100°C, was prepared by the chlorine-iodine exchange on <u>la</u>. Furthermore, the reaction of <u>la</u> at 50°C brought about the slight decrease of the yield.


On the basis of these results, 2a and 5-iodo-3,6-diphenyl-<u>as</u>-triazine (2b), mp 136.5-138°C, were treated with various monosubstituted acetylenes in triethylamine in the presence of palladium dichloride-triphenylphosphine and cupric iodide as catalysts for 12 h at room temperature. As listed in Table II, the yields of the

desired alkynyl-as-triazines (3a-1 - 3a-4, 3b-1 - 3b-4) were satisfactory.

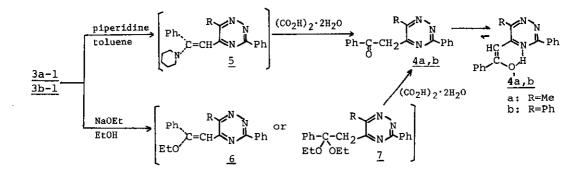
| Run | <u>as</u> -Triazine | Leaving<br>Group | Monosubstituted<br>Acetylene <sup>a)</sup> | Catalyst       | Solvent                          | Temperature | Reaction<br>Time (h) | Yield of<br>Product |
|-----|---------------------|------------------|--------------------------------------------|----------------|----------------------------------|-------------|----------------------|---------------------|
| 1   | <u>1a</u>           | C1               | PhC≡CH                                     | Pd (PPh3) 2C12 |                                  | room temp.  | 12                   | 64%( <u>3a-1</u> )  |
| 2   | <u>2a</u>           | I                | PhC≡CH                                     | CuI            | Et <sub>a</sub> N <sup>b</sup> ) | room temp.  | 12                   | 92%( <u>3a-</u> 1)  |
| 3   | <u>la</u>           | C1               | Me <sub>3</sub> SiC≣CH                     | 0.001mol eq.   | 2                                | room temp.  | 12                   | 37%( <u>3a-3</u> )  |
| 4   | <u>2a</u>           | I                | Me <sub>3</sub> SiC≡CH                     | (each)         |                                  | room temp.  | 12                   | 70%( <u>3a-3</u> )  |
| 5   | <u>1a</u>           | C1               | PhC≡CH                                     |                |                                  | 50°C        | 12                   | 56%( <u>3a-1</u> )  |

Table I. The Reaction of 5-Chloro- (<u>1a</u>) and 5-Iodo-6-methyl-3-phenyl-<u>as</u>-triazine (<u>2a</u>) with Phenylacetylene and Trimethylsilylacetylene.

a) In all the cases, 1.0 mole of <u>as</u>-triazines and 1.2 mole eq. of acetylenes were used.
b) <u>as</u>-Triazines were dissolved in triethylamine at 10% weight/weight.

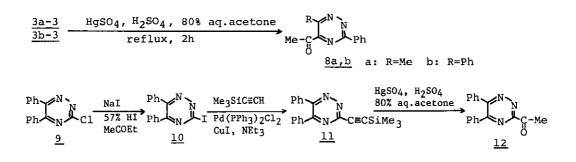


Scheme 1


Table II. Physical Properties and Yields of Alkynyl-<u>as</u>-triazines (3a-1 - 3b-4).

| Compd. No.a) | R  | R'                 | Yield $(%)^{b}$ | mp (°C) | Appearance ( recryst. solv.)            |
|--------------|----|--------------------|-----------------|---------|-----------------------------------------|
| <u>3a-1</u>  | Me | Ph                 | 92              | 115-117 | yellow prisms(AcOEt-hexane)             |
| <u>3a-2</u>  | Me | n-Bu               | 83              | 50-51   | yellow prisms(pentane)                  |
| <u>3a-3</u>  | Me | MegSi              | 70              | 68-70   | yellow prisms(pentane)                  |
| <u>3a-4</u>  | Me |                    | 64              | 65-66.5 | yellow prisms(Et <sub>2</sub> O-hexane) |
| <u>3b-1</u>  | Ph | Ph                 | 83              | 175-177 | yellow prisms(AcOEt)                    |
| <u>3b-2</u>  | Ph | n∽Bu               | 79              | 76.5-78 | yellow prisms(hexane)                   |
| <u>3b-3</u>  | Ph | Me <sub>3</sub> Si | 72              | 105-107 | yellow prisms(hexane)                   |
| <u>3b-4</u>  | Ph |                    | 64              | 91-93   | yellow prisms(AcOEt-hexane)             |

a) Satisfactory analytical and spectral ( IR, <sup>1</sup>H-NMR ) data were obtained for all new compounds.


b) The yields observed on the reaction under the conditions of run 1 are listed.

Secondary, in order to prepare <u>as</u>-triazine derivatives having a carbonyl side chain at the 5-position, the hydration of the alkynyl-<u>as</u>-triazines obtained above was investigated. When <u>3a-1</u> was heated with piperidine in toluene, a viscous oil was obtained. On the treatment with oxalic acid, the oil was converted into 6-methyl5-phenacyl-3-phenyl-<u>as</u>-triazine (<u>4a</u>), mp 135-136°C, in 76 % overall yield from <u>3a-1</u>. Accordingly, a piperidine enamine (<u>5</u>), as shown in Scheme 2, is considered to be a likely intermediate.<sup>5</sup> Similarly, 5-phenacyl-3,6-diphenyl-<u>as</u>-triazine (4b), mp 194-196°C, was derived from <u>3b-1</u> in 86 % yield. The phenacyl compounds (<u>4a,b</u>) were alternatively obtained by the treatment of <u>3a-1</u>, <u>3b-1</u>, with excess sodium ethoxide in boiling ethanol and subsequent hydrolysis of the crude intermediate (<u>6</u> or <u>7</u>). Judging from the <sup>1</sup>H-NMR spectra of <u>4a,b</u>, an enol form (<u>4'a,b</u>) seems to be predominant in the tautomerism in a CDCl<sub>3</sub> solution.<sup>6</sup>



## Scheme 2

On the other hand, when the trimethylsilylethynyl derivatives (3a-3, 3b-3) were heated in aq. sulfuric acid in the presence of mercuric sulfate, 5-acetyl-6methyl-3-phenyl-<u>as</u>-triazine (<u>8a</u>), mp 96-98°C, and 5-acetyl-3,6-diphenyl-<u>as</u>-triazine (<u>8b</u>), mp 108-110°C, were obtained in 47 and 69 % yields, respectively. In addition, this method is applicable to the synthesis of 3-acetyl-<u>as</u>-triazines. Namely, the cross-coupling reaction of trimethylsilylacetylene with 3-iodo-5,6-diphenyl-<u>as</u>-triazine (<u>10</u>), mp 147-149°C, which was easily obtained by the reaction of the corresponding chloride (<u>9</u>) with sodium iodide in the presence of 57 % hydriodic acid, proceeded smoothly to give 3-trimethylsilylethynyl-5,6-diphenyl-<u>as</u>-triazine (<u>11</u>), mp 126-127°C, in 78 % yield. The compound (<u>11</u>), like the positional isomer (<u>3b-3</u>), was hydrolyzed to give 3-acetyl-5,6-diphenyl-<u>as</u>-triazine (12), mp 159.5-161.5°C, as expected.<sup>7</sup> The synthesis of acyl derivatives of <u>as</u>-triazine has not yet been reported prior to the present work. Accordingly, the hydration of the trimethylsilylethynyl-<u>as</u>-triazines provides a method for the preparation of such compounds, though the products are limited in structures.



## Scheme 3

In conclusion, the cross-coupling reaction with terminal acetylenes and the conversion of the resulting products are applicable to the synthesis of <u>as</u>-triazine derivatives as well as that of pyrimidine derivatives.

## REFERENCES AND NOTES

- Part 4: S. Konno, M. Sagi, M. Agata, Y. Aizawa, and H. Yamanaka, <u>Heterocycles</u>, 1984, 22, 2241.
- 2. K. Sonogashira, Y. Tohdo, and N. Hagihara, Tetrahedron Letters, 1975, 4467.
- 3. K. Edo, T. Sakamoto, and H. Yamanaka, Chem. Pharm. Bull., 1978, 26, 3843.
- 4. A. Osawa, Y. Abe, and H. Igeta, Chem. Pharm. Bull., 1980, 28, 3488.
- 5. The conversion of alkynyl groups to acetylene groups in a similar manner was reported on pyrimidine derivatives; K. Tanji, T. Sakamoto, and H. Yamanaka, Chem. Pharm. Bull., 1982, 30, 1865.
- 6. The <sup>1</sup>H-NMR (60 MHz, in CDCl<sub>3</sub>) data of <u>4a,b</u>: <u>4a</u>, <u>6</u> 2.62 (3H, s), 6.18 (1H, s), 7.33-7.72 (6H, m), 7.77-8.08 (2H, m), 8.10-8.43 (2H, m), 15.72 (1H, bs, exchangeable with D<sub>2</sub>O); <u>4b</u>, <u>6</u> 6.30 (1H, s), 7.30-8.05 (13H, m), 8.30-8.60 (2H, m), 15.85 (1H, bs, exchangeable with D<sub>2</sub>O)
- 7. The hydration of trimethylsilylethynyl groups on heteroaromatics other than <u>as</u>-triazines was investigated by us; T. Sakamoto, Y. Kondo, M. Shiraiwa, and H. Yamanaka, <u>Synthesis</u>, 1984, 245.

Received, 19th June, 1984