RING TRANSFORMATION OF 5H-1,2-DIAZEPINONES INTO PYRAZOLES

Giovanna Ciciani and Vittorio Dal Piaz

Dipartimento di Scienze Farmaceutiche dell'Università di Firenze, Via Gino Capponi 9, 50121 Firenze, Italy

Stefano Chimichi

Centro di Studio del CNR sulla Chimica e la Struttura dei Composti Eterociclici e loro Applicazioni, presso l'Istituto di Chimica Organica dell'Università, Via Gino Capponi 9, 50121 Firenze, Italy

Abstract-6-Cyano-2,3-disubstituted 1,2,3,4-tetrahydro-5H-1,2-diazepin-5-ones (1a-f) underwent ring transformation in acidic media to give in good yields 4-cyano-5-[2-(substituted ethenyl)]-3-phenylpyrazoles (2a-f) which can be easily oxidized to pyrazoles containing o-functional groups.

In the course of our studies, we have recently reported that 1,2-diazepinones (1a-f) are readily available by alkaline hydrolysis of isoxazolopyridazinones. ¹ The present communication deals with the still unreported ring transformation of 5H-1,2-diazepin-5-ones ^{2,3} into pyrazoles containing o-functional groups, a promising class of compounds to obtain condensed heterocycles with potential biological activity. ^{4,5}

Conversion of compounds 1a-f into the corresponding pyrazoles 2a-f was performed in good yields (65-75%) by refluxing for 15-50 min a solution of the diazepinone in acetone with 5M hydrochloric acid. 6 Compounds 2a-f were obtained in very small amount (5-10%) also in the alkaline hydrolysis of isoxazolopyridazinones.

SCHEME

a
$$R^1 = H R^2 = C_6 H_5$$

 $R^1 = H$ $R^2 = p - CIC_6H_A$

c $R^1 = H$ $R^2 = 2$ -thienvl

d
$$R^1 = CH_3$$
 $R^2 = C_6H_5$

e $R^1 = CH_3$ $R^2 = p - CIC_6H_4$

a R¹≖H

 $f R^1 = CH_3 R^2 = 2$ -thienyl $b R^1 = CH_3$

Assigned structures for the new pyrazoles 2a-f were supported by their chemical and spectroscopic properties and by elemental analysis data. In particular their ¹H-nmr spectra showed signals (Table 1) attributable to the olefinic protons with coupling constants of 16 Hz, as requested for trans-structures. Moreover, oxidation of 2a-f with a 2.5% KMnO₄ solution in acetone under a CO₂ atmosphere at room temperature yielded the acids 3a-b, ⁷ potential intermediates for the synthesis of condensed pyrazole heterocycles. ⁸

Table 1. Physical and spectroscopic data of the new pyrazoles $^{\theta}$

Comp.	Yield %	тұ (°С)	Cryst. solvent	IR v _{max} (cm ⁻¹) nujol	1 H-nmr (8:ppm)
2a	65	188	benzene	3190(NH),2220(C≡N), 960(-CH=CH-)	7.15 and 7.90(AB, 2H, trans-CH=CH-), 7.32-8.10(m, 10H, 2xArH ₅), 14.18(exch. br s, 1H, NH)
2b	68	245	E+OH	3190(NH),2220(C=N), 960(-CH=CH-)	7.13 and 7.85(AB,2H,trans-CH=CH-), 7.40-7.95(m,9H,ArH ₅ and ArH ₄),14.12 (exch. br s,1H,NH)
2c	67	200	CHCI ₃	3180(NH),2220(C≡N), 960(-CH=CH-)	6.85 and 7.95(AB, 2H, trans-CH-CH-), 7.10-7.99(m, 8H, ArH, and thienyl protons), 14.00(exch.br s, 1H, NH)
2 <i>d</i>	69	117	EtOH	2200(C=N),960 (-CH=CH-)	4.00(s,3H,N-CH ₃),6.85 and 7.70(AB,2H, trans-CH=CH-), 7.26-8.15(m,10H,2xArH ₅)
2e	74	130	EtOH	2200(C=N),960 (-CH=CH-)	4.00(s,3H,N-CH $_3$),6.83 and 7.79(AB,2H, trans-CH=CH-), 7.35-8.15(m,9H,ArH $_5$ and ArH $_4$)
2 <i>f</i>	70	122	EtOH	2200(C≌N),950 (-CH=CH-)	4.00(s,3H,N-CH ₃),6.70 and 7.58(AB,2H, trans-CH=CH-), ³ 6.90-8.15(m,8H,ArH ₅ and thienyl protons)
3a	51	260 (dec)	H ₂ O	3400-2500br(OH), 3150(NH),2180(C=N), 1700(C=O)	5.35(exch. br, 2H, NH and OH), 7.40-7.79 (m, 3H, ArH ₃ , m/p), 7.83-8.00(m, 2H, ArH ₂ , o)
<i>3b</i>	49	220 (dec)	H ₂ O	3500-2400br(OH), 2200(C≡N),1720(C=O)	4.30(s, 3H, N-CH ₃),7.00(exch. br s, 1H, OH 7.35-7.70(m, 3H, ArH ₃ , m/p),7.90-8.10(m, 2 ArH ₂ , o)

 $solvent: (2a-c), 3a \ {\it and} \ 3b \ {\it DMSO-d}_6 \ ; \ (2d-f) \ {\it CDCl}_3$

The pyrazoles 2a-f are thought to arise from an initial protonation at the N-1 of the diazepines, opening of the ring and nucleophilic addition of water to give 4.

These intermediates eventually give the compounds 2a-f by attack of the 1-NH group on the carbonyl carbon and subsequent elimination of water from the newly formed side chain.

ACKNOWLEDGEMENT

We are grateful for the excellent technical assistance of Miss Sandra Gallori

REFERENCES AND NOTES

- V.Dal Piaz, G.Ciciani, A.Costanzo, G.Auzzi, and S.Chimichi, <u>Heterocycles</u>, in press.
- 2. M.Nastasi, <u>Heterocycles</u>, 1976, 4, 1509.
- H.C.van der Plas, "Ring transformation of Heterocycles", vol. 1 and 2, Academic Press, New York, 1973.
- 4. R.E.Orth, J.Pharm.Sci., 1968,57,537.
- 5. W.E.Kirkpatrick, T.Okabe, I.W.Hillyard, R.K.Robins, A.T.Dren, and T.Novinson, J.Med.Chem., 1977,20,386.
- Treatment of compound 1c with 5M hydrochloric acid was carried out at room temperature for 24 h.
- 7. ¹³C-nmr data(DMSO-d₆) for compound 3b: 158.4(CO),151.1(C-3),138.7(C-5),129.9 (C-ipso),129.5(C-para),128.95(C-o/m),126.3(C-m/o),113.8(CN),92.0(C-4) and 40.35(N-Me).
- 8. M.H.Elnagdi, F.M.Abdel-Galil, and B.Y.Riad, Heterocycles, 1983,20,2437.
- All new compounds gave satisfactory elemental analysis data (C,H,and N).
 Melting points are uncorrected.

Received, 23rd July, 1984