CYANATION IN THE PYRIDINE SERIES: SYNTHETIC APPLICATIONS OF THE REISSERT-HENZE AND RELATED REACTIONS

Wilmer K. Fife Department of Chemistry Indiana University-Purdue University at Indianapolis P.O. Box 647 Indianapolis, IN 46223, USA and Eric F. V. Scriven Reilly Tar & Chemical Corporation 1510 Market Square Center 151 North Delaware Street Indianapolis, IN 46204, USA

 $\frac{Abstract}{applied}$ - This review provides an up-to-date summary of the Reissert-Henze reaction, as applied to the cyanation of pyridine derivatives. It highlights recent studies that have established some highly efficient, regioselective methods for the synthesis of 2- and 4pyridinecarbonitriles.

Contents

1. INTRODUCTION

- 2. CYANATION OF N-OXIDES IN THE PRESENCE OF ACYLATING AGENTS 2.1. Under Two-Phase Conditions
 - 2.2. Under Non-Aqueous Conditions
 - 2.2.1. In the presence of carbamoylating or benzoylating agents 2.2.2. In the presence of sulforylating agents 2.2.3. In the presence of phosphorus agents
- 3. CYANATION OF SALTS OF N-OXIDES
 - 3.1. 1-Alkoxypyridiniums
 - 3.2. 1-Acyloxypyridiniums
 3.3. 1-Aryloxypyridiniums
 3.4. 1-Silyloxypyridiniums

4. CYANATION OF N-AMINOPYRIDINIUM SALTS

- 4.1. N-Acetylaminopyridiniums
- 4.2. N-Pyridinio-4-pyridones
- 4.3. 4-Aryliminiumpyridiniopyridiniums
- 5. CYANATION OF N-ALKYL AND N-ACYL QUATERNARY SALTS 5.1. Reissert-Kaufmann Reaction
 - 5.2. Reissert Reaction
- 6. CYANATION OF N-THIOPYRIDINIUMS

1. INTRODUCTION

Henze reported¹, that the hydrochloride of quinoline 1-oxide, when treated with benzoyl chloride and potassium cyanide gave 2-quinolinecarbonitrile (Scheme 1).

Such cyanations of quinoline and isoquinoline N-oxides have become known since as the Reissert-Henze² reaction, because they are an extension of the well known Reissert reaction (see 5.2). Unlike the Reissert reaction, which has been the subject of several reviews, 2^{-8} the Reissert-Henze reaction has not been the exclusive subject of a review. However, some extensions of this important reaction were reviewed in this journal a few years ago.⁹ Here, we highlight new developments that extend the synthetic utility of this cyanation to the pyridine series.

First, it is useful to consider the Reissert-Henze reaction in the wider context of the reaction of N-alkoxyand N-acyloxypyridiniums with nucleophiles. These were classified into four types (Paths A-D) by Katritzky¹⁰. A further category (Path E) was added subsequently by Abramovitch.¹¹

The Reissert-Henze reaction provides an example of Path B. Attack by cyanide, of course, may take place also at C-4. In practice, one or more of the other pathways have been found to compete with cyanation. New ways of suppressing or avoiding such side reactions, and methods that lead to regiospecific α - or γ cyanation have added greatly to the synthetic versatility of this reaction. The cyanation of N-alkoxy- and N-amino-pyridinium salts is also reviewed. The work is divided according to the nature of the element attached to the pyridine-nitrogen.

2. CYANATION OF N-OXIDES IN THE PRESENCE OF ACYLATING AGENTS

2.1. Under Two-Phase Conditions

Cyanation of pyridine 1-oxides under classical Reissert-Henze conditions¹ (i.e., treatment of the N-oxide and potassium cyanide in a well-stirred mixture of water and chloroform with benzoyl chloride Eq. 1) has proven to be a reaction of very limited synthetic value. The few reported examples of cyanation by this method are given in Table 1; note the exclusive α -orientation, and the beneficial effect of electron-withdrawing substituents on the yield.

Substituent	% Yield of Isolation Products ⁸			Reference	
	2-CN	4-C N	6-CN		
 Н	5			12, 13	
4- C1	63			14	
2-(2'-Pyridinyl)			62	15	
2-CF3			61	16	
3-CF3	17		34	16	
4-CF3	71			16	

Table 1. Cyanation of Pyridine 1-Oxide with Aqueous Potassium Cyanide-Benzoyl Chloride

^aCyano compounds were sometimes characterized as the corresponding amide or carboxylic acid.

2.2. Under Non-Aqueous Conditions

2.2.1. In the presence of carbamoylating or benzoylating agents

Fife has recently reported the quantitative conversion of pyridine 1-oxides to 2-pyridinecarbonitriles by treatment of the N-oxide with equivalent amounts of trimethylsilanecarbonitrile and dimethylcarbamoyl chloride in dichloromethane solution (Eq. 2).¹⁷ This new modification of the Reissert-Henze reaction provides experimentally easy access to a wide variety of substituted 2-pyridinecarbonitriles (Table 2).

 α -Cyanation predominates, unless both α -positions are blocked (Table 2), and no evidence was found for γ -cyanation under the conditions used. The effect of a 3-substituent in the N-oxide upon the orientation of cyanation is interesting. Methyl, methoxy, chloro, and hydroxy groups, attached at the 3-position of the starting N-oxide, direct cyanation predominantly, or exclusively (3-OH), to C-2. On the other hand, N-oxides bearing strongly electron-withdrawing groups (3-CO₂Me and 3-CN) undergo 2- and 6-cyanation with about equal facility.

Substituent	Position of Cyanation, %		%	% Yield
	2-CN	4-CN	6-CN	
 Н	100	·		94
2-Me			100	90
3-Me	90		10	95
4-Me	100		—	90
2,6-Me ₂				0
$2-\mathrm{MeO}^{13}$			100	90
3-MeO	98	_	2	87
2-Cl ¹³	~~~		100	90
3-C1	89		11	90
3-ОН	100			86
3-CO ₂ Me	40		60	70
3-CN	55		45	82

Table 2. Cyanation of Pyridine 1-Oxides with Trimethylsilanecarbonitrile and Dimethylcarbamoyl Chloride^a

^aSee reference 17 unless otherwise noted.

The success of this new modification of the Reissert-Henze reaction may be attributed to several factors. The use of a non-aqueous, non-nucleophilic solvent eliminates potential competing reactions such as solvolysis of the acyl chloride, ring attack by water, and ring-opening processes (Path D). Trimethyl-silanecarbonitrile represents an excellent source of cyanide ion because of its high solubility in organic solvents and its relative inertness to acyl chlorides.¹⁷ Its particular effectiveness in cyanation may be attributable in part to a unique interaction with the acyloxypyridinium intermediate, 1 (Scheme 2). Intermediates such as 2 that include a trigonal bipyramidal silicon have been proposed by Corriu for a

number of reactions of silicon reagents.¹⁸ Postulation of this type of intermediate provides an explanation for the high regioselectivity of the reaction. The selectivity is also accommodated by an irreversible deprotonation step via <u>3</u>.

Benzoyl chloride has been shown to be clearly inferior to dimethylcarbamoyl chloride in effecting cyanation of pyridine 1-oxides by trimethylsilanecarbonitrile.¹⁷ Although quantitative conversion of the N-oxide to the corresponding 2-pyridinecarbonitrile is possible with excess trimethylsilanecarbonitrile (5-fold) and benzoyl chloride (2-fold), yields of cyanation product are only 30-40% when equimolar quantities of all reagents are used. This difference is ascribed to a competing pathway involving intermediate $\underline{4}$ that leads to benzoyl cyanide by cyanide attack at the N-acyloxy carbonyl group. The more ketone-like carbonyl group of $\underline{4}$ is expected to be more susceptible to nucleophilic attack than the corresponding carbonyl group in 2.

2.2.2. In the presence of sulfonylating agents

Cyanations of some pyridine 1-oxides in the presence of p-toluenesulfonyl chloride have been less successful than those described in the last section (Eq. 3).¹⁹ However, treatment of quinoline 1-oxides with potassium cyanide and p-toluenesulfonyl chloride leads to some fascinating rearrangements.⁹

Warawa²⁰ has described the novel 2,6-dicyanation of 3-(hydroxymethyl)pyridine 1-oxide with potassium cyanide and methyl fluorosulfonate (Eq. 4). This reaction is restricted to pyridine 1-oxides bearing 3-substituents that can form an anhydrobase during the course of reaction.

2.2.3. In the presence of phosphorus agents Shioiri and coworkers²¹ have reported the cyanation of a series of N-oxides, for example, pyridine 1-oxide (Eq. 5), using diethyl phosphorocyanidate (DEPC).

24.5%

More recently, Fife¹⁷ has obtained a comparable result with diphenyl phosphorochloridate and trimethylsilanecarbonitrile as reagents (Eq. 6). This suggests the possibility of a common intermediate, 5, in these apparently closely related processes.

3. CYANATION OF SALTS OF N-OXIDES

3.1. 1-Akoxypyridiniums

The most widely used laboratory method for the preparation of pyridinecarbonitriles has been the cyanation of 1-methoxypyridiniums with potassium cyanide in cold aqueous solution (Scheme 3). This reaction was discovered independently, and at about the same time, by Okamoto and Tani,²² and Feely and Beavers.²³ Their work has been discussed quite extensively in the major reviews of N-oxide chemistry.^{11,24,25}

Scheme 3

Despite wide-spread and frequent utilization, the Feely-Beavers/Okamoto-Tani method has certain drawbacks. Yields are often under 50% and are distributed among several products (Paths A - D). Pyridine

1-oxides bearing substituents such as -OH, $-NH_2$ and -COOH that are readily alkylated, of course, undergo multiple alkylation prior to cyanation. Nonetheless, as a result of extensive investigations, Tani and others have demonstrated considerable control over product composition. 11,24,25

Cyanation at an α -position of 1-alkoxypyridinium ions can be reliably predicted for the 2- and 4- substituted derivatives; i.e. 4-substituted 1-alkoxypyridinium ions cyanate only at the 2-position and the 2-substituted analogues cyanate predominantly, if not exclusively, at the 6-position. The reactions of 3-substituted 1-alkoxypyridiniums present a more complex situation. Cyanation can occur at the 2-, 4-, or 6-position, with or without hydrolysis of the pyridinecarbonitrile so formed (Table 3, also see references 11, 24, 25, 31).

Ferles and Jankovsky 2^{6-28} have carefully investigated the influence of substituent size on cyanation

product distribution in a series of 1-alkoxy-3-alkylpyridiniums, $\underline{6}$ (Table 3). There is progressive enhancement of cyanation in the 4-position at the expense of the 2-position as the steric demands of 1- and 3-substituents increase. Predictably, the 6-position remains relatively insensitive to these changes.

The employment of N-t-alkoxypyridiniums in cyanations, in order to avoid proton-loss and side-reaction by Path A, is limited by the difficulty in making such salts. Sliwa and Tartar³³ have overcome this problem by using activated halides (e.g. α -halo-acids and esters) to form alkoxyquaternaries which then are cyanated. In the example below (Eq. 7), 2-pyridinecarbonitrile was the main product, and no pyridine (the Path A product) was detected.

Substituents		Conditions ^a	% Yield of Isolated Products			Reference	
1-	3-	Temperature, ^o C	2-CN	4-CN	6-CN	6-CONH ₂	
OMe	Me	-5 to 00	36	6	6	_	
OMe	Ме	-5 to +1°	19	7.6	2	13	26
OMe	Et	-5 to $+1^{\circ}$	_d	38	d	12.8	26
OMe	Et	r.t. ^b	_e	36	_e	-	32
OMe	Bu−i	-5 to +1°_	44	41	-	15	27
OMe	CH ₂ COOEt	23 to 250 ⁰	_d	36	_d	_	29
OEt	Me	-5 to +1 ⁰	23	40	4.4	17.5	26
OEt	Me	50 ⁰	_d	60	~d	_	30
OEt	Et	-5 to +1°	_d	47	_d	12.5	26
OEt	Pr–i	-5 to +1°	_d	38.2	_d	24.8	26
OEt	Bu-i	00	30	55	-	15	27
OPr-n	Me	-5 to +10	7.9	35.5	14.0	10.5	26
OPr-n	Et	-5 to +1 ⁰	_d	43.5	_d	10	26
OPr-n	Bu-n	50	_f	40	_f	-	28
OPr-n	Bu-i	0 ⁰	24	61	-	15	27
OPr-i	Me	-5 to +1°	3.9	57.6	10.5	7.2	26
OBu-n	Ме	-5 to +1 ⁰	0	25.4	9.0	10.4	26
OBu-n	Et	-5 to +1°	-d	54	_d	27	26
OBu-n	Pr-i	-5 to +1 ⁰	d	62.4	_d	19.5	26
OBu-n	Bu⊢i	00	25	60	-	15	27
OPen-i	Me	-5 to +1°	0	51.0	15.5	21	26

Table 3. Cyanation of 1-Alkoxy-3-alkylpyridiniums

^aReactions were run in water with iodide salts unless otherwise noted. ^bSolvent: Dioxane-water. ^cThe methylsulfate salt was used. ^d2-CN and 6-CN yields were not determined. ^e2-CN and 6-CN were not separated, but together represented a product yield of 30%. ^f2-CN and 6-CN were not separated, but chromatographic separation (Al₂O₃) of corresponding acids indicated 10% of each had been formed.

3.2. 1-Acyloxypyridiniums

Although 1-acyloxypyridinium ions of the type $\underline{7}$ have long been presumed to be the reactive intermediate in the few documented examples of cyanation of pyridine 1-oxides in the presence of benzoyl chloride,¹⁴⁻¹⁶ the very recent report of Fife³⁴ represents the first use of previously prepared and isolated 1-acyloxypyridinium ions for preparation of 2-pyridinecarbonitriles in high yield (Eq. 8).

Product mixtures from cyanation of these ions closely resemble those obtained by treatment of the related pyridine 1-oxides with trimethylsilanecarbonitrile and dimethylcarbamoyl chloride (Table 4). Furthermore, rates of cyanation of 1-acyloxypyridinium ions appear to be relatively insensitive to the nature of ring substituents. In contrast, cyanation of the pyridine 1-oxides follows the order expected for ease of acylation: $3-Me = H > 3-COOCH_3$.³⁴ Therefore, it seems likely that cyanation of pyridine 1-oxides with trimethylsilanecarbonitrile in the presence of dimethylcarbamoyl chloride proceeds by way of a 1-acyloxypyridinium ion, and there are now two essentially equivalent procedures for preparing substituted 2-pyridinecarbonitriles in high yield under very mild conditions. The particular effectiveness of trimethyl-silanecarbonitrile in ring cyanation is demonstrated in its reaction with the 4-cyano derivative to form 2,4-pyridinedicarbonitrile (Table 4, Scheme 4)¹³. In contrast, attempted cyanation with potassium cyanide gave only deacylation products (Path C).¹³

Scheme 4

			Position of Cyanation, %		tion, %
Substituent	Reagent	Solvent	2-CN	4-CN	6-CN
	Me ₃ SiCN	CH ₂ Cl ₂	100		
	KCŇ	MeĆN	100		
	KCN	H ₂ O	100		
3-Me ^b	MeaSiCN	CH ₂ Cl ₂	90		10
	KCN	MeČN	86		14
	KCN	н ₂ о	89		11
-COoMeb	MeaSiCN	CHoClo	40	trace	60
, 00Ziii0	KCN	MeCN	48	10	42
	KCN	D ₂ O	55	2	43
-Me ^c	MeaSiCN	CHoClo	100		
1.1.20	KCN	MeČN	100		
	KCN	H ₂ O	100		
4-Ph ^e	MeaSiCN	CH ₂ Cl ₂	100		
	KCN	MeČN	100		
	KCN	н ₂ о	100		
4-CN ^C	MeaSiCN	DMSO-d ₆ :CDCl ₃ (3:1)	100		
	KCN	DMSO-de:CDCla	d	d	d

Table 4. Cyanation of 1-Dimethylcarbamoyloxypyridinium Chlorides at Room Temperature^a

^aYields of isolated cyano-products usually exceed 90%. ^bSee reference 34. ^cW. K. Fife, unpublished work. ^dPyridinecarbonitrile 1-oxide formed (Path C).

3.3. 1-Aryloxypyridiniums

In view of the utility of 1-alkoxy- and 1-acyloxy-pyridiniums in the synthesis of pyridineearbonitriles, it is somewhat surprising that 1-aryloxypyridinium ions do not form cyano products when treated with cyanide ion.³⁵ Instead, after initial attack by cyanide at C-2, a 3,5-sigmatropic rearrangement takes place (Scheme 5), rather than elimination (Path B).

Scheme 5

3.4. 1-Silyloxypridiniums

The recently reported method of Vorbrüggen and Krolikiewicz³⁶ for cyanation of pyridine 1-oxides with trimethylsilanecarbonitrile in the presence of triethylamine provides high yields (70% or greater) of the 2-cyano-product when R is H, 3-Me, 4-Me, 3-OH, 3-CN, 5-COOH, and 5-CONH₂ (Scheme 6, Table 5).

			% Yield of Isolated Product			
 Substituent	Reagents	Reaction Time	2-CN	4-CN	6-CN	
Н	2.5 eq Me ₃ SiCN/1.5 NEt ₃ /	12 hr	80	< 0.5	0	
	3 eq Me ₃ SiCl/3 eq NaCN/ 4 eq NEt ₃ /DMF	18 hr	76	1.3	0	
2-Me	5 eq Me ₃ SiCl/4 eq NaCN/ 6 eq NEt ₃ /DMF	72 hr	41	0	0	
3-Me	3 eq Me ₃ SiCl/3 eq NaCN/ 4 eq NEt ₃ /DMF	52 hr	40	0	40	
4-Me	4 eq Me ₃ SiCN/2 eq NEt ₃ / CH ₃ CN	20 hr	89	0	0	
. 3-ОН	3.5 eq Me ₃ SiCN/2.5 eq NEt; CH ₂ CN	3/ 8 hr	73	0	0	
	4 eq Me ₃ SiCl/2 eq NaCN/ 5 eq NEt ₃ /DMF	12 hr	90	0	0	
3-CN	3 eq Me ₃ SiCl/3 eq NaCN/	8 hr	53	0	27	
	3 eq Me ₃ SiCN/4 eq NEt ₃ / 0.1 eq n-Bu ₄ N ⁺ F ⁻ /THF \land	1 hr/5°C	48	0	18	
3-соон	4 eq Me ₃ SiCl/3 eq NaCN/ 5 eq NEt ₃ /DMF	10 hr	0	0	76	
3-CONH ₂	5 eq Me ₃ SiCl/3 eq NaCN/ 6 eq NEt ₃ /DMF	12 hr	0	0	70	

Table 5. Cyanation of Pyridine 1-Oxides with Trimethylsilanecarbonitrile/Triethylamine at 100-110^{o,a}

^aSee reference 36.

Unsuccessful efforts by Fife and co-workers¹³ to cyanate pyridine 1-oxides with trimethylsilanecarbonitrile in the absence of a base or with transition metal cyanides provide additional evidence for the role of triethylamine in deprotonation of addition intermediates, $\underline{8}$. The requirement of triethylamine to effect reaction also suggests the intervention of an octahedral complex such as $\underline{9}$. This complex enables one to rationalize the high specificity of the reaction for cyanation at the 2-position and resembles intermediates proposed by Fife¹⁷ for cyanation by Me_3SiCN/Me_2NCOCl as well as those proposed earlier for other reactions of silicon compounds.¹⁸

Scheme 6

The product distributions, 2,3- vs. 2,5- observed for 3-CN, 3-COOH and 3-CONH₂ substituted pyridine 1oxides (Table 5) provides additional evidence for the involvement of a bulky intermediate. The 3-COOH and 3-CONH₂ groups are expected to be silvated quickly under the conditions of the reaction, and hence make substantial steric demands around the 3-position.

4. CYANATION OF N-AMINOPYRIDINIUM SALTS

4.1. N-Acetylaminopyridiniums

Okamoto and his school³⁷ found that the cyanation of N-acetylaminopyridinium salts, 10, takes place at C-4 rather than C-2 as in alkoxy quaternary salts (Eq. 9).

When methanol is used as the reaction solvent 2-cyanation predominates over 4 - almost two-fold.³⁸ A little of the 2-cyano-isomer (7%) may be obtained by raising the cyanide excess from 4:1 (Eq. 9) to 13.2:1 over the salt, 10, but the yield of the major product, 11, is raised to 76%. The effect of raising the cyanide excess used is spectacular for the cyanations of the 3-bromo and 3-methoxy salts, 12 and 13 (Table 6).

Table 6. Cyanation of N-Acetylaminopyridinium Salts in Aqueous Potassium Cyanide

R		% Yield of Is	olated Product
N MeAc	Salt/KCN	2-CN	4-CN
R = 3-Br	1:1.13	23	69
3–Br	1:5•45	90	trace
3-OMe	1:3	20	60
3-OMe	1:21-25	97	trace

Treatment of the corresponding 3-methyl- and 3-phenyl-pyridinium salts with a large excess of potassium cyanide results in over 90% 4-cyanation in each case. The attachment of an alkyl (or allyl) group, and an electron-withdrawing substituent (e.g. p-nitrophenyl or methylsulfonyl) is required (to facilitate the elimination step) for salts of this type to participate in these reactions.

4.2. N-Pyridinio-4-pyridones

Katritzky and coworkers³⁹ found that N-pyridinio-4-pyridone, <u>14</u>, unlike Okamoto's salts, undergoes α and γ - rather than mainly γ -cyanation in the presence of aqueous sodium cyanide (Scheme 7). Reaction was shown to proceed via a 1,4-adduct, and 4-pyridone is formed as a by-product. The 3-methyl analogue of <u>14</u> cyanates at the 2-(40%), 4-(13%), and 6-(7%) positions. Although a decrease in the cyanide excess did promote 4- at the expense of 2-cyanation in the series, overall yields fell and synthetically useful selectivity was not achieved.

On the other hand, pyridinio-4-pyridone salts, bearing methyl groups at C-2 and C-6 in the pyridone moiety, were found to undergo regiospecific C-4 addition of cyanide in high yield, as C-2 attack was blocked. (Scheme 8). These adducts proved to be remarkably stable compounds as compared to those lacking 2- and 6-methyl groups. Nevertheless, they readily underwent elimination on heating to afford the corresponding 4-pyridinecarbonitriles and 2,6-dimethyl-4-pyridone.

i, excess NaCN aq. on 15a (R¹=R²=H); ii, excess NaCN aq. on 15b (R¹=R²=Me)

Scheme 8

The reversibility of 1,4-dihydro-compound formation was demonstrated by stirring either <u>15a</u> or <u>15b</u> with sodium cyanide at room temperature. The former gave a 1:1 mixture of 2- and 4-pyridinecarbonitriles, and the latter gave <u>16</u>. These and the results of other experiments allowed the authors to explain the increase in 2- over 4-cyanation with increase in cyanide ion excess (Scheme 9) by the requirement that $\underline{k}_2 > \underline{k}_4$ (kinetically controlled attack at C-2), and that $\underline{k}_4 < \underline{k}_2$ (intermediate <u>17</u> is thermodynamically more stable than intermediate <u>19</u>).

Scheme 9

Therefore, at high cyanide concentrations formation of 19, and elimination are fast; thus formation of 2pyridinecarbonitriles is favored. At lower cyanide concentration, elimination (\underline{k}'_2) is slower and equilibration 17 = 18 = 19 becomes possible allowing an increase in the rate of production of 4-pyridinecarbonitrile.

4.3. 4-Aryliminiumpyridiniopyridiniums

Recently, the Katritzky-Sammes group has reported an excellent new synthesis of 4-pyridyl(aryl)amines from

4-chloro-1-pyridiniopyridinium salts (Scheme 10).⁴⁰ Of interest to us here is the nature of the second product, 2-pyridinecarbonitrile, that is formed concomitantly with the 4-pyridyl(aryl)amine. In contrast to the work with pyridiniopyridones (4.2), no 4-pyridinecarbonitrile was formed on treatment of iminium salts of the type 20 with sodium cyanide even when R = Me. This striking difference was tentatively attributed to two factors. Lengthening of the N-N bond in 20, due to the extra positive charge on the salt, would reduce the steric effect of the methyl groups. The higher charge density at the pyridinium α -positions should also favor 2-cyanation.

5. CYANATION OF N-ALKYL AND N-ACYL QUATERNARY SALTS

5.1. Reissert-Kaufmann Reaction

Quite soon after the discovery of the Reissert reaction, 41 Kaufmann and Albertini 42 showed that potassium cyanide adds 1,4- to the 1-methylquinolinium ion. However, as methyl is a poor leaving group forcing conditions were needed for its removal, and pseudobase formation interfered. Consequently, this does not provide a synthetically useful approach to cyano-heterocycles. N-Alkylpyridiniums, bearing an electron-withdrawing 3-substituent, readily undergo 1,4-addition of cyanide, and such processes that are of great biochemical significance have been reviewed elsewhere.⁴³ The 1,4-addition of cyanide to 1-methyl-pyridinium chloride has an interesting outcome, leading ultimately to the formation of the herbicide paraquat, 21, (Scheme 11).⁴⁴

Scheme 11

5.2. Reissert Reaction

The Reissert reaction (Scheme 12), discovered in the quinoline series, 41 provides a classical method for the synthesis of aldehydes.² Reissert reaction in isoquinolines yields Reissert compounds which are important precursors for alkaloid synthesis.³⁻⁷

The Reissert reaction, however, has not proved very useful in the pyridine series. Only one example of Reissert compound formation has been reported to date. 45 (Eq. 10)

A process for the regiospecific synthesis of 4-pyridinecarbonitrile was described a few years ago (Scheme 13).⁴⁶

This procedure illustrates the advantage of having a sufficiently good leaving group on nitrogen to facilitate the elimination step, but one that is not so strongly electron-withdrawing that 2-cyanation is preferred.

6. CYANATION OF N-THIOPYRIDINIUMS

N-Thiopyridinium salts are extremely rare compounds that have been adequately described only recently by Abramovitch and coworkers.⁴⁷ Treatment of 22 with potassium cyanide yielded an isothiocyanate (by Path C) rather than a pyridine-ring substituted product (Scheme 14).

Scheme 14

REFERENCES

- 1. M. Henze, Ber., 1936, 69, 1566.
- 2. W. E. McEwen and R. L. Cobb, Chem. Rev., 1955, 55, 511.
- 3. F. D. Popp, Adv. Heterocycl. Chem., 1968, 9, 1.
- 4. F. D. Popp, Heterocycles, 1973, 1, 165.
- 5. F. D. Popp, Adv. Heterocycl. Chem., 1979, 24, 187.
- 6. F. D. Popp, Heterocycles, 1980, 14, 1033.
- 7. F. D. Popp, Bull. Soc. Chim. Belg., 1981, 90, 609.
- 8. J. V. Cooney, J. Heterocycl. Chem., 1983, 20, 823.
- 9. E. Hayashi and T. Higashino, Heterocycles, 1979, 12, 837.
- a) R. Eisenthal and A. R. Katritzky, <u>Tetrahedron</u>, 1965, <u>21</u>, 2205; b) A. R. Katritzky and E. Lunt, ibid., 1969, <u>25</u>, 4291.
- 11. R. A. Abramovitch and E. M. Smith, Chem. Heterocycl. Compd., 1974, 14, Suppl. 2, 1.
- 12. E. Ochiai and I. Nakayama, J. Pharm. Soc. Jpn., 1945, 65, 7; Chem. Abstr., 1951, 45, 8529.
- 13. W. K. Fife, unpublished work.
- 14. H. Tani, J. Pharm. Soc. Jpn., 1960, 80, 1418.
- I. Antonini, F. Claudi, G. Cristalli, P. Franchetti, M. Grifantini, and S. Martelli, J. Med. Chem., 1981, 24, 1181.
- 16. Y. Kobayashi and I. Kumadaki, Chem. Pharm. Bull., 1969, 17, 510.
- 17. a) W. K. Fife, J. Org. Chem., 1983, 48, 1375; b) W. K. Fife, Heterocycles, 1984, 22, 93.

- a) R. J. P. Corriu and C. Guerin, <u>Adv. Organomet. Chem.</u>, 1982, 20, 265; b) J. Boyer, R. J. P. Corriu,
 R. Perz and C. Reye, <u>Tetrahedron</u>, 1983, <u>39</u>, 117.
- a) M. Hamana and T. Matsumoto, <u>Yakugaku Zasshi</u>, 1971, <u>91</u>, 269; b) E. Hayashi and N. Shimada, <u>ibid.</u>, 1978, <u>98</u>, 95.
- 20. E. J. Warawa, J. Org. Chem., 1975, 40, 2092.
- 21. S. Harusawa, Y. Hamada, and T. Shioiri, Heterocycles, 1981, 15, 981.
- 22. a) T. Okamoto and H. Tani, Chem. Pharm. Bull., 1959, 7, 130; b) H. Tani, ibid., 1959, 7, 930.
- 23. W. E. Feely and E. M. Beavers, J. Am. Chem. Soc., 1959, 81, 4004.
- 24. E. Ochiai, "Aromatic Amine Oxides", Elsevier, Amsterdam, 1967.
- 25. A. R. Katritzky and J. M. Lagowski, "Chemistry of Heterocyclic N-oxides", Academic, New York, 1971.
- 26. M. Ferles and M. Jankovsky, Coll. Czech. Chem. Comm., 1968, 33, 3848.
- 27. M. Ferles and M. Jankovsky, Coll. Czech. Chem. Comm., 1970, 35, 2797.
- 28. M. Ferles and M. Jankovsky, Coll. Czech. Chem. Comm., 1966, 31, 3008.
- 29. R. Tan and A. Taurins, Tetrahedron Lett., 1965, 2737.
- H. J. W. van den Haak, H. C. van der Plas, and B. van Veldhuizen, J. Heterocycl. Chem., 1981, <u>18</u>, 1349.
- 31. Y. Sakata, K. Adachi, Y. Akahori, and E. Hayashi, Yakugaku Zasshi, 1967, 87, 1374.
- 32. G. Büchi, R. E. Manning, and F. A. Hochstein, J. Am. Chem. Soc., 1962, 84, 3393.
- 33. H. Sliwa and A. Tartar, J. Heterocycl. Chem., 1978, 15, 145.
- 34. W. K. Fife and B. D. Boyer, Heterocycles, in press.
- 35. R. A. Abramovitch, A. L. Miller, T. A. Rodzikowska, and P. Tomasik, J. Org. Chem., 1979, 44, 464.
- 36. H. Vorbrüggen and K. Krolikiewicz, Synthesis, 1983, 316.
- 37. T. Okamoto, M. Hirobe, and A. Ohsawa, Chem. Pharm. Bull., 1966, 14, 518.
- 38. A. Ohsawa, M. Hirobe, and T. Okamoto, Yakugaku Zasshi, 1972, 92, 73.
- 39. C. W. F. Leung, M. P. Sammes, and A. R. Katritzky, J. Chem. Soc., Perkin Trans. 1, 1979, 1698.
- 40. M. P. Sammes, K.-W. Ho, M.-L. Tam, and A. R. Katritzky, J. Chem. Soc., Perkin Trans. 1, 1983, 973.
- 41. A. Reissert, Ber., 1905, 38, 1603.
- 42. A. Kaufmann and A. Albertini, Ber., 1909, 42, 3776.
- 43. D. M. Stout and A. I. Meyers, Chem. Rev., 1982, 82, 223.
- 44. R. H. Reuss and L. J. Winters, J. Org. Chem., 1973, 38, 3993.
- 45. R. H. Reuss, N. G. Smith, and L. J. Winters, J. Org. Chem., 1974, 39, 2027.
- 46. J. Schantl and H. Gstach, Synthesis, 1980, 694.
- 47. R. A. Abramovitch, A. L. Miller, and J. Pilski, J. Chem. Soc., Chem. Comm., 1981, 703.

Received, 23rd March, 1984