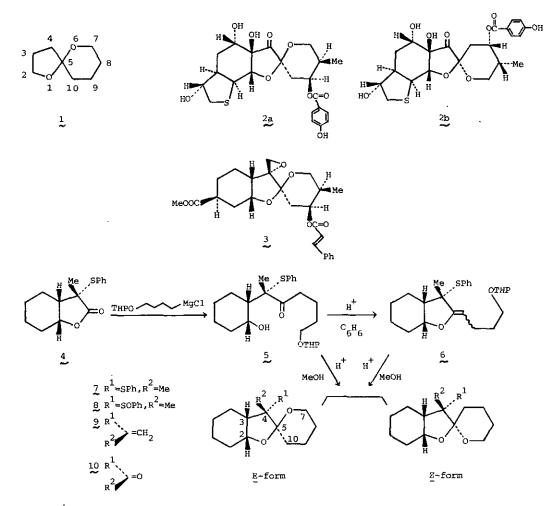
SYNTHESIS OF E- AND Z-1,6-DIOXASPIRO[4.5]DECANES

Chuzo Iwata*, Hiroshi Atarashi, Katsuya Nakamura, and Shuji Uchida Faculty of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565, Japan


<u>Abstract</u> — An efficient synthesis of <u>E</u>- and <u>Z</u>-1,6-dioxaspiro-[4.5]decanes has been achieved <u>via</u> the intramolecular ketallization of <u>5</u> bearing a bulky substituent(SPh) at the position α to the carbonyl group.

Much attention has been given to the natural products containing a 1,6-dioxaspiro-[4.5]decane skeleton 1 from view point of biological and synthetic interests. Breynogenin 2a and isobreynogenin 2b are genuine and artificial aglycons, derived from an acid hydrolysis of a hypocholesterolemic glycoside, breynin A.¹ The structures of both aglycons, possessing E- and 2-1,6-dioxaspiro[4.5]decane ring systems, were respectively established.

Recently, Kupchan and co-workers have reported the characterization of phyllanthocin, an aglycon of antileukemic glycoside, phyllanthoside.² The structure 3 of the aglycon, carrying an E-1,6-dioxaspiro[4.5]decane ring, was elucidated by an X-ray analysis.

From a biological interest of both \underline{E} - and \underline{Z} -forms in simple 1,6-dioxaspiro[4.5]decanes,^{3,4,5} we examined the synthesis of tricyclic spiroketals(\underline{E} - and \underline{Z} -forms) <u>via</u> the intramolecular ketallization of a precursor 5.

This paper describes an efficient route to \underline{E} - and \underline{Z} -1,6-dioxaspiro[4.5]decane ring systems, simplified models of 2a and 3(\underline{E}) and 2b(\underline{Z}), in racemic forms. Grignard reagent⁶(5 equiv.) prepared from tetrahydropyranyl ether of 4-chloro-1butanol, was added to the readily available <u>cis</u>-lactone $\underline{4}^7$ (THF, 60°C, 15 h) and after the usual work-up(satd. aq.NH₄Cl, 0°C) and distillation, the hydroxyketone $\underline{5}[v_{max}$ (CCl₄): 1700 cm⁻¹]⁸ was obtained as a colorless oil(76%). Cyclization[p-TsOH (1 equiv.), MeOH, r.t., 1.5 h] of $\underline{5}$ gave the $\underline{E}:\underline{2}$ mixture(<u>ca</u>. 1:5 by glc and hplc) of sulfides $\underline{7}$ in nearly quantitative yield.⁹ Careful chromatographic separation(mplc, Lober column, hexane:AcOEt=60:1) afforded the pure isomers, \underline{E} - $\underline{7}$ [a colorless oil; v_{max} (CCl₄): 1580, 1070, 1040, 965 cm⁻¹; δ_{H} (CCl₄): 1.18(3H, s), 3.42-4.16(3H, m);

m/z: 318(M⁺, 3.9%), 218(100%)] and $\underline{Z}-\underline{7}$ [a colorless oil; v_{max} (CCl₄): 1580, 1065, 970 cm⁻¹; $\delta_{\rm H}$ (CCl₄): 1.08(3H, s), 3.48-4.05(2H, m), 4.16(1H, m); m/z: 318(M⁺, 5.7%), 218 (100%)]. When the compound 5 was subjected to cyclization(benzene, r.t., 1 h) in the presence of a catalytic amount of p-TsOH, the dehydration product $\underline{6}[\delta_{\rm H}(C_6D_6): 1.32(3H, s), 3.22-4.00(4H, m), 4.08(1H, m), 4.58(1H, m), 4.73(1H, t, J=8 Hz)]$ could be isolated as an unstable oil(66%), which was cyclized under the same conditions used for 5 to afford the same 1:5 mixture(75%) of $\underline{E}-\underline{7}$ and $\underline{Z}-\underline{7}$.

A tentative assignment of the stereochemistry of these isomers was at this stage made on the basis of the 13 C NMR chemical shift(relative low-field resonance at C-2¹⁰ for the <u>Z</u>-isomer)^{5a}(Table). Final proof was obtained by an X-ray analysis on a compound described in the accompanying paper.

Oxidation(NaIO₄, MeOH:H₂O=10:1, r.t., 70 h) of $\underline{2}-\underline{7}$ followed by chromatography on alumina gave the two diastereomeric isomers, $\underline{2}-\underline{8}$ [the major isomer(64%); mp 149-150°C]

and $\underline{Z}-\underline{B}$ [the minor isomer(30%); mp 150-151°C] whereas similar treatment of $\underline{E}-\underline{7}$ furnished the corresponding sulfoxides, $\underline{E}-\underline{8}$ [the major isomer(71%); mp 95-96°C] and $\underline{E}-\underline{8}$ [the minor isomer(15%); mp 135-137°C] along with $\underline{2}-\underline{8}(8.3\%)$ and $\underline{Z}-\underline{8}$ (3.7%). The \underline{E} -isomers($\underline{E}-\underline{8}$ and $\underline{E}-\underline{8}$) obtained above were, after acid-catalyzed isomerization (p-TsOH, MeOH, r.t., 1 h), converted exclusively into the respective \underline{Z} -isomers($\underline{Z}-\underline{8}$) and $\underline{Z}-\underline{8}$).

Thermolysis(toluene, reflux, 23 h) of $\underline{z}-\underline{8}$ in the presence of trimethylphosphite (5 equiv.) afforded the olefin $\underline{z}-\underline{9}$ [a colorless oil(60%); bp 120°C/0.004 mmHg] as a sigle product. The product was equilibrated with an acid(pyridinium p-toluenesulfonate, CH_2Cl_2 , 0°C, 2 h) to furnish an $\underline{E}:\underline{Z}$ mixture(3:1 by ¹H NMR). This epimeric mixture was separated by chromatography on alumina and purified on distillation to give $\underline{E}-\underline{9}^{11}$ (bp 100°C/0.002 mmHg), and the repeated runs of recovered $\underline{Z}-\underline{9}$ gave a further amount of $\underline{E}-\underline{9}$.

Ozonolysis (MeOH, -78°C) of E-9 and Z-9 and subsequent removal of the solvent yielded the corresponding ketones, E-10[a colorless oil(66%)] and Z-10(63%; mp 57-58°C), respectively. Isomerization (p-TsOH, CH_2Cl_2 , r.t., 10 days) of each isomer resulted in an inseparable mixture(6:1) of E-10 and Z-10.

In general, the E-isomer is more stable thermodynamically than the corresponding Z-isomer in 1,6-dioxaspiro[4.5]decanes.^{2b,5} In fact, the respective E-isomers were preferentially obtained in the dioxaspirane ring isomerization of 9 and 10. However, in the cases of 7 and 8, the respective Z-isomers were obtained preferentially(in 7) or exclusively(in 8). This phenomenon would be attributable to the steric interaction between the bulky substituent(SPh or SOPh) at C-4 and the C-10 methylene. Much cleaner structural information about the spirane juncture of a series of the spiroketals obtained above can be diagnostically available from the comparison of the ¹³C NMR chemical shifts at C-2 of the isomeric pairs: its carbon resonance in the Z-series is uniformly low-field from the corresponding carbon in the E-series (Table).¹²

Carbon	I		<u>8</u>		2		10	
	Ē	Z	Ē	<u>Z</u>	E	<u>Z</u>	E	Z
2	73.7	76.4	73.1	74.9	73.7	77.5	71.3	75.5
3	48.3	48.1	50.8	47.3	42.5	42.2	44.0	46.1
4	65.7	63.9	77.2	75.1	158.2	154.8	211.4	211.4
5	107.0	107.5	103.9	106.2	103.7	105.0	99.1	99.1
7	62.3	61.2	62.8	61.5	61.8	62.5	61.9	62.2

Table. Selected ¹³C NMR(CDCl₃, δ_{ppm} , TMS=0) spectral data of 7, 8, 9, and 10

In conclusion, \underline{E} - and \underline{Z} -1,6-dioxaspiro[4.5]decane ring systems found in breynogenin and phyllanthocin(\underline{E}) and isobreynogenin(\underline{Z}) could be obtained from 5 or 6 via 7 in the reaction sequence ($\underline{E}:\underline{Z}-\underline{7} \rightarrow \underline{E}:\underline{Z}-\underline{8} \rightarrow \underline{Z}-\underline{8} \rightarrow \underline{Z}-\underline{9} \rightarrow \underline{Z}-\underline{10}$ or $\underline{E}-\underline{9} \rightarrow \underline{E}-\underline{10}$)¹³ involving the isomerization of $\underline{E}-\underline{8}$ and $\underline{Z}-\underline{9}$ to the corresponding isomers. Work is currently in progress to utilize this approach in the synthesis of a variety of spiroketals including natural products

REFERENCES AND NOTES

- K.Sasaki and Y.Hirata, <u>Tetrahedron Lett</u>., 1973, 2439; F.Sakai, H.Ohkuma, H. Koshiyama, T.Naito, and H.Kawaguchi, <u>Chem. Pharm. Bull</u>., 1976, 24, 114; H. Koshiyama, M.Hatori, H.Ohkuma, F.Sakai, H.Imanishi, M.Ohbayashi, and H.Kawaguchi, <u>ibid</u>., 1976, 24, 169.
- 2. (a) S.M.Kupchan, E.J.LaVoie, A.R.Branfman, B.Y.Fei, W.M.Bright, and R.F.Bryan, <u>J. Am. Chem. Soc</u>., 1977, 99, 3199. (b) P.R.McGuirk and D.B.Collum, <u>J. Am. Chem.</u> <u>Soc</u>., 1982, 104, 4496, <u>J. Org. Chem</u>., 1984, 49, 843; D.R.Williams and S.Y.Sit, <u>J. Am. Chem. Soc</u>., 1984, 106, 2949.
- 3. Simple spiroketals such as 2-methyl- and 7-methyl-1,6-dioxaspiro[4.5]decanes exist in nature⁴ as an E:Z mixture, both isomers of which are pheromone components. Various attempts⁵ of syntheses of these spiroketals resulted in an E:Z mixture with predominance of E-isomer. From this mixture, the isolation of each isomer is very difficult on a preparative scale.
- 4. W.Francke, G.Hindorf, and W.Reith, <u>Angew. Chem. Int. Ed. Engl.</u>, 1978, 17, 862, <u>Naturwissenschaften</u>, 1979, 66, 618; W.Francke, W.Reith, G.Bergström, and J.Tengö, <u>ibid</u>., 1980, 67, 149; P.Gariboldi, L.Verotta, and R.Fanelli, <u>Experientia</u>, 1983, 39, 502.
- 5. (a) W.Francke, W.Reith, and V.Sinnwell, <u>Chem. Ber.</u>, 1980, <u>113</u>, 2686; E. Hungerbühler, R.Naef, D.Wasmuth, D.Seebach, H.R.Loosli, and A.Wehrli, <u>Helv. Chim.</u> <u>Acta</u>, 1980, <u>63</u>, 1960. (b) K.Hintzer, R.Weber, and V.Schurig, <u>Tetrahedron Lett</u>., 1981, 55; R.E.Ireland and D.Häbich, <u>Chem. Ber</u>., 1981, <u>114</u>, 1418; S.V.Ley and B. Lygo, <u>Tetrahedron Lett</u>., 1982, 4625; R.Jacobson, R.J.Taylor, H.J.Williams, and L.R.Smith, <u>J. Org. Chem</u>., 1982, <u>47</u>, 3140; S.V.Ley and B.Lygo, <u>Tetrahedron Lett</u>., 1984, 113.
- 6. J.M.Conia and F.Ronessac, Tetrahedron, 1961, 16, 45.
- 7. P.A.Grieco and J.J.Reap, <u>Tetrahedron Lett.</u>, 1974, 1097; P.A.Grieco, <u>Synthesis</u>, 1975, 67.

- 8. The carbonyl band shows the presence of the keto-form in compound 5. The coexistence of the corresponding hemiacetal-form in 5 may be possible but has not been confirmed by our present spectral data.
- 9. This is a thermodynamically controlled ketallization: identical product distributions could be obtained by the equilibration experiment [p-TsOH, MeOH, r.t., 5 min] of $\underline{E}-\underline{7}$ or $\underline{2}-\underline{7}$.
- 10. 1,6-Dioxaspiro[4.5]decane numbering system is used in this paper for clarity.
- 11. The same product $\underline{E}-\underline{9}(69\%)$ was also obtained by thermolysis(toluene, reflux, 3 h) of $\underline{E}-\underline{9}$.
- 12. This trend is found and discussed in 2- and/or 7-alkylated 1,6-dioxaspiro[4.5]decanes: see ref. 5a.
- 13. For the introduction of epoxide ring found in phyllanthocin, see accompanying paper.

Received, 28th May, 1984