A CONVENIENT SYNTHESIS OF PROPYL SUBSTITUTED BENZOFUROCOUMARINS

Vinod Kumar Ahluwalia^{*}, Rishi Pal Singh, and Rama Pati Tripathi Department of Chemistry, University of Delhi, Delhi - 110 007, India

<u>Abstract</u> - A convenient synthesis of propyl substituted benzofurocoumarins has been achieved by condensation of 2-bromocyclohexan-1-one with hydroxy-4-propyl-2H-1-benzopyran-2-ones followed by ring closure with PPA and subsequent dehydrogenation using DDQ.

Benzofuranocoumarins constitute a group of naturally occurring compounds of biological interest. Many of them are associated with estrogenic¹, insecticidal² and antibacterial³ activities. They are also known to play an important role as phytoalexins⁴. Further, 4-propyl-2H-1-benzopyran-2-ones are found to possess insecticidal^{5, 6} and antibacterial⁶ activities. In view of the above, it was considered of interest to construct benzofuran ring on 4-propyl-2H-1-benzopyran-2-ones. The resulting propyl substituted benzofuranocoumarins may have better physiological activities. In this communication, we report an efficient method for the synthesis of propyl substituted benzofuranocoumarins. It involves the etherification⁷ of hydroxy-2H-1-benzopyran-2-ones with 2-bromocyclohexan-1-one followed by cyclisation with polyphosphoric acid (PPA) and subsequent dehydrogenation with 2, 3-dichloro-5, 6-dicyanobenzoquinone (DDQ).

Initially, the synthesis of 9-propyl-7H-benzofuro [2, 3-h][1] benzopyran-7-one $(\underline{1})$ has been carried out as follows. A mixture of 7-hydroxy-4-propyl-2H-1-benzopyran-2-one⁸ (2 g, 10.4 mmol), 2-bromocyclohexan-1-one⁹ (1.2 ml, 10.46 mmol), anhydrous acetone (75 ml) and anhydrous potassium carbonate (6 g) was refluxed for 24 h and the reaction mixture was filtered. Evaporation of the solvent and treatment of residue with crushed ice gave a solid which crystallised from ethanol as rectangular plates (2.35 g), $C_{18}H_{20}O_4$. It responded to DNP, indicating the presence of a ketonic group. Its ¹H-NMR spectrum showed a triplet at $\boldsymbol{\delta}$ 1.08 (\underline{J} 7 Hz)

^{*} Author to whom all correspondence be made,

for methyl group of propyl chain; the signals for two methylene groups of propyl chain were mixed with methylene protons of cyclohexanone ring, thereby, appearing as two multiplets at 6 1.57-2.18 and 2.32-2.72 integrating for eight and four protons respectively. A multiplet at § 4.60-4.78, integrating for one proton, was assignable to methineoxy group. Therefore, the product was assigned the structure of 7-(2-oxo-cyclohexanyloxy)-4-propyl-2H-1-benzopyran-2-one (2). Compound 2 (1 g, 3.47 mmol) on heating with polyphosphoric acid (10 ml) at 95-100°C for 10 h yielded a mixture of two products (overall yield 80%). The products were isolated from the reaction mixture by pouring it over the crushed ice, extraction with ether and washing the organic layer with aqueous sodium bicarbonate solution (5%) followed by purification by column chromatography over silica gel. Both of them analysed for $C_{18}H_{18}O_3$ and did not give any DNP test. The 1 H-NMR spectrum of the first compound showed two doublets at § 7.15 and 7.23 (J 9.5 Hz) for ortho coupled protons at C-10 and C-11 respectively while that of second showed two singlets at δ 7.20 and 7.40 for para protons of C-6 and C-11 besides other usual signals. Moreover, the ¹H-NMR spectrum of both the compounds showed the absence of methineoxy group. Hence, the first and second products were assigned the structures, 2,3,4, 5-tetrahydro-9-propyl-7H-benzofuro [2,3-h] [1] benzopyran-7-one (3) and 2,3,4,5-tetrahydro-7-propyl-9H-benzofuro [3,2-g] [1] benzopyran-9-one (4), respectively. Exclusive formation of compound 4 could also be achieved by cyclisation⁷ of 2 (1 g, 3.47 mmol) with ethanolic potassium hydroxide (0.1 N, 200 ml) at 80-90°C (18 h refluxing). Dehydrogenation of 3 (0.2 g, 0.74 mmol) with DDQ (0.35 g, 1.54 mmol) in anhydrous benzene (25 ml) (36 h refluxing) afforded the required 1 (0.15 g) as colourless crystals. However, dehydrogenation of 4 with DDQ furnished 7-propyl-9H-benzofuro [3,2-g] [1] benzopyran-9-one (5). The structures of 1 and 5 were established on the basis of their elemental analysis and $^{1}\mathrm{H} ext{-NMR}$ spectral data (Table -1).

11-Methyl-7-propyl-9H-benzofuro [3,2-g] [1] benzopyran-9-one (6) was synthesised starting from 7-hydroxy-8-methyl-4-propylcoumarin.¹⁰ The latter on condensation with 2-bromocyclohexan-1-one in acetone/potassium carbonate afforded 7-(2-oxo-cyclohexanyloxy)-8-methyl-4propyl-2H-1-benzopyran-2-one (7). Compound 7 was cyclised by heating with PPA to give a product which analysed for $C_{19}H_{20}O_3$. It was assigned the structure, 2,3,4,5-tetrahydro-11methyl-7-propyl-9H-benzofuro [3,2-g] [1] benzopyran-9-one (8) on the basis of its ¹H-NMR spectral data (Table-1). Dehydrogenation of <u>8</u> with DDQ in anhydrous benzene furnished the required <u>6</u>. The structure of <u>6</u> was confirmed on the basis of microanalysis and ¹H-NMR spectral data (Table -1).

Similarly, 6-methyl-11-propyl-9H-benzofuro [2, 3-f][1] benzopyran-9-one (9) was synthesized by condensation of 5-hydroxy-7-methyl-4-propylcoumarin⁸ with 2-bromocyclohexanone followed by cyclisation of the intermediate ether viz., 5-(2-oxo-cyclohexanyloxy)-7-methyl-4propyl-2H-1-benzopyran-2-one (10) with PPA to give 2, 3, 4, 5-tetrahydro-6-methyl-11-propyl-9H-benzofuro [2, 3-f] [1] benzopyran-9-one (11) and subsequent dehydrogenation with DDQ. The structures of 9, 10 and 11 were in agreement with their elemental analyses and ¹H-NMR spectral data (Table -1). Compounds 8 and 11 could also be prepared by cyclisation of 7 and 10 respectively with ethanolic potassium hydroxide.

Product ^a , b	Yield (%)	m, p. ^c (°C)	1 H-NMR(CDCl ₃ /TMS) δ (ppm)
1	7 5	140-141	1.08(t, <u>J</u> 7 Hz, 3H), 1.50-1.80(m, 2H), 2.65(t, <u>J</u> 7 Hz,
			2H), 5.99(s, 1H), 7.10-7.98(m, 6H).
2	80	172-173	1.08(t, <u>J</u> 7 Hz, 3H), 1.57-2.18(m, 8H), 2.32-2.78(m,
			4H), 4.60-4.78(m, 1H), 6.01(s, 1H), 6.60(d, <u>J</u> 2.5 Hz,
			1H), 6.75(dd, <u>J</u> 9.5 Hz, 2.5 Hz, 1H), 7.41(d, <u>J</u> 9.5 Hz,
			1H).
3	40	153-155	1.07(t, <u>J</u> 7 Hz, 3H), 1.51-2.15(m, 6H), 2.32-2.78(m,
			6H), 6.10(s, 1H), 7.15(d, J 9.5 Hz, 1H), 7.23(d, J 9.5 Hz
			1H).
4	40	168-169	1.00(t, J 7 Hz, 3H), 1.60-1.90(m, 6H), 2.50-2.80(m,
			6H), 6.08(s, 1H), 7.20(s, 1H), 7.40(s, 1H).
5	75	220-221	1.10(t, <u>J</u> 7 Hz, 3H), 1.60-1.92(m, 2H), 2.82(t, <u>J</u> 7 Hz,
			2H), 6.18(s, 1H), 7.20-7.98(m, 6H).
6	75	218-219	1.04(t, <u>J</u> 7 Hz, 3H), 1.60-1.90(m, 2H), 2.59(s, 3H),
			2.81(t, J 7 Hz, 2H), 6.20(s, 1H), 7.20-7.97(m, 5H).
.7_	80	193-194	1.08(t, <u>J</u> 7 Hz, 3H), 1.60-2.10(m, 8H), 2.40(s, 3H),
			2.52-2.85(m, 4H), 4.55-4.75(m, 1H), 6.03(s, 1H),
			6.52(d, J 9.5 Hz, 1H), 7.26(d, J 9.5 Hz, 1H).
.8	70	146-147	1.06(t, <u>J</u> 7 Hz, 3H), 1.50-2.08(m, 6H), 2.50(s, 3H),
			2.51-2.92(m, 6H), 6.01(s, 1H), 7.30(s, 1H).
2	75 ⁻	145-146	1.08(t, <u>J</u> 7 Hz, 3H), 1.58-1.81(m, 2H), 2.62(s, 3H),
			2.95(t, <u>J</u> 7Hz, 2H), 6.01(s, 1H), 6.95(s, 1H), 7.12-
			7.89(m, 4H).
10	80	153-154	1.05(t, <u>J</u> 7Hz, 3H), 1.52-2.15(m, 8H), 2.40(s, 3H),
			2.65-3.40(m, 4H), 4.20-4.41(m, 1H), 5.98(s, 1H),
			6.70(d, 1H, J 2.5 Hz), 7.20(d, J 2.5 Hz, 1H).

Table	-	1	:	Compounds	1	11	prepared
-------	---	---	---	-----------	---	----	----------

•

- a Satisfactory microanalysis obtained for all the products.
- b The screening of all these compounds for antifertility activity is in progress and will be reported separately.
- c Not corrected.

ACKNOWLEDGEMENTS

We are thankful to the University Grants Commission, New Delhi for financial help.

REFERENCES

- 1. B.M. Bicoff, A.L. Livingston and A.N. Booth, <u>Biochem. Biophys.</u>, 1960, <u>88</u>, 262.
- 2. P.P. Rao and G. Shrimanarayana, Indian J. Chem., 1983, 22B, 945.
- 3. D.P. Chakravarti, P.K. Bose and S. Mishra, Trans. Bose Res. Inst., 1961, 24, 31.
- E.M. Bicoff, A.L. Livingston, A.M. Booth, C.R. Thompson, F.A. Hollwell and
 E.G. Beinhart, J. Anim. Sci., 1960, 19, 4.
- 5. C. Djerassi, E.J. Eisenbraun, R.A. Finnegan, and B. Gilbert, <u>Tetrahedron Lett.</u>, 1959, 10.
- L. Crombie, D.E. Games, N.J. Haskins and G.F. Reed, <u>J. Chem. Soc. Perkin</u> <u>Trans. I</u>, 1972, 2255.
- 7. J.K. Macleod and B.R. Worth, Tetrahedron Lett., 1972, 237.
- N.G. Kotwani, S.M. Sethna and G.D. Advani, <u>Proc. Indian. Acad. Sci.</u>, 1942, <u>15A</u>,
 441.
- 9. J. Allinget and N. L. Allinget, Tetrahedron, 1958, 2, 64.
- 10. V.K. Ahluwalia and R.P. Tripathi, J. Indian Chem, Soc., in press.

Received, 5th July, 1984