ACTIVATED NITRILES IN HETEROCYCLIC SYNTHESIS: A NEW SYNTHESIS OF 3-FURAN-2-YLIDENE- AND 3-THIOPHEN-2-YLIDENE-3,6-DIHYDROPYRIDINE DERIVATIVES

Galal Eldin Hamza Elgemeie a^{+*} , Ebtisam Abdel Aziz Hafez $^{\rm b}$, Galal Abdel Moein Nawar $^{\rm c}$, and Mohamed Hilmy Elnagdi

Department of Chemistry, Faculty of Science, Minia University, Minia $^{\rm a}$; Cairo University, Giza $^{\rm b}$ and National Research Centre, Dokki $^{\rm c}$; Egypt

<u>Abstract</u>-Synthesis of 3-furan-2-ylidene- and 3-thiophen-2-ylidene-3,6-dihydropyridine derivatives via the reaction of cyanothioacetamide with furan-2-ylidene and thiophen-2-ylidene derivatives of malononitrile, ethyl cyanoacetate and benzoylacetonitrile.

As a part of a program to examine the scope and limitations of α.β-unsaturated nitriles in heterocyclic synthesis $^{1-4}$, the reactivity of cyanothioacetamide 1 toward the α,β~unsaturated nitrile derivatives 2a-f, readly obtainable via condensation of 2-furancarbaldehyde and 2-thiophencarbaldehyde with malonomitrile, ethyl cyanoacetate and benzoylacetonitrile was investigated. Although it has been recently reported that 1 reacts with α-benzoylcinnamonitrile to yield 4,6-diaryl-1,2-dihydro-2-thioxo-3,5-pyridinecarbonitrile, via Michael addition of 1 to the activated double bond in the cinnamonitrile derivative, cyclisation and aromatization 5,6, we have found that the reaction of 1 with 2a-f proceeds in completely different way. Thus, 1 (0.01 mol) reacted with 2a,b (0.01 mol) when refluxed in ethanol (50 ml) containing catalytic amounts of piperidine for 2 h to yield 1:1 adducts (as revealed from Ms). Six theoretically possible structures were considered (cf. structures 3-6, chart 1). Dihydropyridine structures which might be formed via a mechanism similar to that recently proposed 6 were readly ruled out as 1 H nmr revealed two two proton signals at δ 2.77 and δ 2.96 ppm (D₂O exchangeable) in addition to the furanyl or thiophenyl protons and one low field singlet at δ 8.15 ppm.

[†] Present Address: Institut für Organische Chemie der Technischen Hochschule

Darmstadt, Petersenstraße 22, D-6100 Darmstadt, Bundesrepublic Deutschland.

This spectra is obviously different than expected spectra for $\underline{3}a$, b or $\underline{4}a$, b. On the same bases the thiazine structure $\underline{5}$ could be ruled out. In order to confirm further structure proposed for the reaction products ^{13}C nmr was inspected. ^{13}C nmr spectra revealed the absence of any sp^2 carbon and the presence of only one cyano group. Thus, structure $\underline{6}$ was considered for the reaction products. Compounds $\underline{6}a$, b are assumed to be formed via addition of $\underline{1}$ to the two cyano functions in $\underline{2}a$, b under the condition described above.

Compound $\underline{1}$ reacted with 2c,d under the same condition as described above to yield products of molecular formula corresponding to addition of $\underline{1}$ to $\underline{2}$ c,d and ethanol elimination. Structure $\underline{7}$ or isomeric $\underline{8}$ was suggested for these products based on $\underline{1}$ H nmr which revealed only one down field signal for 3H which is \underline{D}_2 O exchangeable and thus cannot be assigned for protons linked to sp³ carbons and a fact that excludes all other isomeric structures similar to those previously considered and excluded for the reaction product of $\underline{1}$ with $\underline{2}$ a,b. Structure $\underline{8}$ seemed to be most likely formed as acylation of the active methylene group in $\underline{2}$ under reaction conditions to be highly improbable reaction.

Compound $\underline{2}e$ reacted with $\underline{1}$ to yield also a 1:1 adduct. Here again $\underline{1}H$ nmr data were carefully inspected in order to discriminate structures similar to those proposed by Soto et al. $\underline{5}$, $\underline{6}$ from the 3-ylidene structures we assigned for products of reaction of $\underline{1}$ and $\underline{2}a$ -d. While $\underline{1}H$ nmr data clearly exclude such structures, two isomeric structures seemed, however, possible (cf. structures $\underline{9}$ and $\underline{10}$). Structure $\underline{9}$ was considered least likely, however, as if the product is $\underline{9}$ down field shift of the two ortho protons would have been expected. In contrast, $\underline{2}f$ afforded only the thiophenylidene derivative $\underline{11}$ on treatment with $\underline{1}$ under the same reaction conditions. Compound $\underline{11}$ could be also directly obtained from reaction of $\underline{1}$ with 2-thiophencarbaldehyde. Similar ylidene group exchange has been previously reported by us in several cases and its mechanism has been discussed $\underline{7}$,8.

Table 1: List of compounds 6a,b; 8a,b; 10 and 11

Compound*	Solvent of cryst.	Colour	Мр (^О С)	Yield (%)	Mol.formula	M ⁺ m/e
<u>6</u> a	EtOH/DMF	brown	279-81	70	c ₁₁ H ₈ N ₄ 0S	244
<u>6</u> b	EtOH/DMF	yellow	205-06	85	C ₁₁ H ₈ N ₄ S ₂	260

Compound*	Solvent of cryst.	Colour	Mp (°C)	Yield (%)	Mol.formula	M ⁺ m∕e
<u>8</u> a	EtOH	yellow	254-56	80	C ₁₁ H ₇ N ₃ O ₂ S	245
<u>8</u> b	EtOH	yellow	208-10	75	$c_{11}H_7N_3OS_2$	
<u>10</u>	EtOH/DMF	orange	245-46	90	c ₁₇ H ₁₁ N ₃ 0S	305
<u>12</u>	EtOH/DMF	orange	260-62	75	c ₈ H ₆ N ₂ S ₂	

^{*} Satisfactory elemental analyses for all the newly synthesised compounds were obtained.

Table 2: Spectroscopic data for compounds listed in Table 1

Compound	$IR[cm^{-1}]$ (Selected bands)	¹ H NMR δ[ppm]
<u>6</u> a	3340, 3240(2NH ₂); 2220 (CN); 1620(C=N and δNH ₂)	3.12(s, br, 2H, NH ₂); 3.44(s, br, 2H, NH ₂); 6.98(m, 1H, furan 5-H); 7.56(dd, 1H, furan 4-H); 8.15(s, 1H, furan 3-H); 8.28(s, 1H, CH)
<u>6</u> b*	3400(2NH ₂); 2210(CN); 1620(C=N and 6NH ₂)	2.72(s, br, 2H, NH ₂); 2.96(s, br, 2H, NH ₂); 7.34(q, 1H, thiophen 5-H); 7.77(m, 2H, thiophen 4,3-H); 8.15(s, 1H, CH)
<u>8</u> a	3380, 3250(NH ₂ and NH); 2220(CN); 1680(CO); 1600 (6NH ₂ and NH)	3.34(s, br, 3H, NH ₂ and NH); 6.92(q, 1H, furan 5-H); 7.55(d, 1H, furan 4-H); 7.99(s, 1H, furan 3-H); 8.22(s, 1H, CH)
<u>8</u> b	3450, 3400, 3300(NH ₂ and NH); 2222(CN); 1670(CO); 1600(C=N, &NH ₂ and &NH)	3.01(s, br, 3H, NH $_2$ and NH); 7.23-7.34(m, 2H, thiophen 4,5-H); 7.88-7.98(m, 2H, thiophen 3-H and CH)
10	3400-3300, 3200(NH ₂); 2200(CN); 1600-1560(&NH ₂)	3.82(s, br, 2H, NH ₂); 6.89 (m, 2H, furan 4,5-H); 7.44-7.88(m, 6H, furan 3-H and C_6H_5); 8.28(s, 1H, CH)
<u>11</u>	3500-3450(NH ₂); 2220(CN); 1580(6NH ₂)	2.88(d, 2H, NH ₂); 7.31(q, 1H, thiophen 5~H); 7.66(dd, 1H, thiophen 4-H); 8.02(m, 2H, thiophen 3-H and CH)

* 13C-nmr: 162.19 (C-2); 151.02 (C-3); 81.32 (C-4); 154.56 (C-5); 179.46 (C-6); 102.48 (C-7); 116.40 (C-8); 133.00-127.61 (aromatic carbons).

ACKNOWLEDGEMENT

We are grateful to Prof. Dr. K. Hafner, Institut für Organische Chemie, Technische Hochschule Darmstadt for facility that enabled measurment of Ms and $^{13}\mathrm{C}$ nmr.

G. E. H. Elgemeie and M. H. Elnagdi are deeply indebted to the Alexander von Humboldt-Stiftung for granting a fellowship.

REFERENCES

- 1- M. H. Elnagdi, H. A. Elfahham and G. E. H. Elgemeie, <u>Heterocycles</u>, 1983, <u>20</u>, 519.
- 2- M. H. Elnagdi, M. R. H. Elmoghayar and G. E. H. Elgemeie, Synthesis, 1984, 1.
- 3- G. E. H. Elgemeie, S. A. Elees, I. Elsakka and M. H. Elnagdi, Z. Naturforsch., 1982, 38b, 639.
- 4- G. E. H. Elgemeie, H. A. Elfahham, S. M. Hassan and M. H. Elnagdi, <u>I. Natur</u>forsch., 1983, 38b, 781.
- 5- M. R. Rubio, C. Seoane and J. L. Soto, <u>Heterocycles</u>, 1983, <u>20</u>, 783.
- 6- M. J. R. Encinas, C. Seoane and J. L. Soto, Liebigs Ann. Chem., 1984, 213.
- 7- N. S. Girgis, G. E. H. Elgemeie, G. A. Nawar and M. H. Elnagdi, <u>Liebigs Ann.</u> Chem., 1983, 1468.
- 8- H. A. Daboun, S. E. Abdou, M. M. Hussein and M. H. Elnagdi, <u>Synthesis</u>, 1982, 502.

Received, 31st August, 1984