oxazolidines and thiazolidines as carbon transfer agents $\text{Synthesis of tetrahydro -} \mathcal{G}\text{-}\text{carboline and isoquinoline derivatives}$

Harjit Singh * and Rakesh Sarin

Department of Chemistry, Guru Nanak Dev University

Amritsar - 143 005, India

Abstract - Oxazolidines and thiazolidines transfer their C_2 units to appropriate nucleophiles and furnish the corresponding tetrahydro- $\hat{\beta}$ -carboline and isoquinoline derivatives.

The carbon transfer character of \triangle^2 -thiazolinium and oxazolinium cations 1 in a manner analogous to THF models, N-acetyl or tosyl-N'-methylimidazolinium cations 2 , at the -COOHlevel, has been demonstrated. N-Acetyl or tosyl-N'-methylimidazolidines possessing differently basic nitrogen atoms perform carbon transfer at the -C=0 level. 3 , 4 N-Methylpyrrolidine, tetrahydrothiophene and tetrahydrofuran exhibit pka values 10.4, -4.5 and -2.1, respectively. 5 We argued that when two of the heteroatoms such as N,O,S, are placed in identical environment in a perhydro five membered heterocycle, viz. thiazolidine and oxazolidine, a similar order of the difference in basicity of these heteroatoms would be available and such heterocycles could mimic the carbon transfer process of N 5 ,N 10 -methylenetetrahydrofolate at carbonyl level.

2-Phenyl thiazolidine $\underline{1b}$ with tryptamine $\underline{2a}$ in acetonitrile in the presence of an anhydrous acid furnished 1-phenyl-1,2,3,4-tetrahydro- β -carboline $\underline{6a}$. The rate of the reaction is enhanced by the presence of an n-butyl group at nitrogen of 2-phenyl thiazolidine $\underline{1a}$ and the presence of an acetyl group $\underline{1c}$ adversely affects the reaction. 2-Phenyl-4,4-dimethyloxazolidine $\underline{5a}$ and tryptamine in acetonitrile in the presence of anhydrous HCl react exothermally at room temperature to give $\underline{5a}$, but in the presence of $\mathrm{CH_3COOH}$ or TFA, the reaction mixture has to be refluxed. On performing the reaction of $\underline{2a}$ with 2-phenyl-3-methyloxazolidine $\underline{5b}$ and 2,3-diphenyloxazolidine $\underline{5c}$, the N-substituent effect on reactivity has been found to be in the order N-CH₃ \rangle N-H \rangle N-C₆H₅. Similarly, 2-(p-methoxyphenyl)-4,4-dimethyloxazolidine $\underline{5d}$, 3-methyloxazolidine $\underline{5e}$ and 3-phenyloxazolidine $\underline{5f}$ react with tryptamine to furnish to corresponding tetrahydro - β -carboline derivatives. The harman alkaloid

eleagnine 6d has also been synthesised via transfer of -CHCH₃ from 2,3-dimethyl-oxazolidine 5g and 2-methyl-3-phenyloxazolidine 5h to tryptamine. The reactions of homoveratrylamine and phenethylamine with 2-aryl-4,4-dimethyloxazolidines yield Schiff's bases 7a-d and with anhydrous HCl, 7b could be cyclized to 1-phenyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline 3. However, homoveratrylamine and 5d in CH₃CN/HCl yield iminium chloride 7a.HCl. Besides lower reaction temperatures and better yields, the use of oxazolidines has the advantage that crystalline product could be isolated after neutralization of reaction mixtures as against the formation

Tetrahydro - B-Carbolines and Schiff's Bases 1

The state of the s									
Amine	Reagent	Product	Time(h)			Yield(%)			
			a	р	С	a	b	c	
<u>2a</u>	<u>la</u>	<u>6 a</u>	10	0.5	25	65	45	40	
<u>2a</u>	<u>1b</u>	<u>6 a</u>	12	200	30	70	50	50	
<u>2a</u>	<u>1c</u>	<u>6 a</u>	100	200	200	50	00	35	
<u>2a</u>	<u>5</u> b	<u>6 a</u>	4.5	0.2 ^d	5	73	80	70	
<u>2a</u>	<u>5 a</u>	<u>6 a</u>	5	0.2 ^đ	5', 5	85	85	65	
<u>2a</u>	<u>5c</u>	<u>6 a</u>	9	0.2 ^d	10.5	66	26	60	
<u>2a</u>	<u>5d</u>	<u>6b</u>	3	0.2 ^đ	3'• 5	85	85	83	
<u>2a</u>	<u>5e</u>	<u>6c</u>	2 ^e	0.2 ^e	0.5 ^e	07	05	05	
<u>2a</u>	<u>5</u> £	<u>6 c</u>	3	0.2 ^e	3.5	32	12	50	
<u>2</u> a	<u>59</u>	<u>6 d</u>	2^{d}	o.3 ^e	10	53	04	00	
<u>2a</u>	<u>5h</u>	<u>6 d</u>	$2^{\mathbf{d}}$	0.3 ^e	2	42	03	37	
<u>2b</u>	<u>5a</u>	<u>7</u> <u>b</u>	2	0.2 ^d	2.5	90	£	86	
<u>2c</u>	<u>5a</u>	<u>7d</u>	4	0.2 ^đ	2	90	£	92	
<u>2</u> b	<u>5d</u>	<u>7 a</u>	10 đ	0.5 ^d	12^{d}	80	88 g	7 8	
<u>2c</u>	<u>5d</u>	<u>7c</u>	1.5	0.2 ^d	2	89	£	90	
<u>2a</u>	<u>4a</u>	<u>6 a</u>	2	o.5 ^d	3	70	65	65	
<u>2a</u>	<u>4a-d</u>	<u>6 a</u>		4 ^h			80-88		
<u>2a</u>	<u>4e-g</u>	<u>6b</u>		4 ^h			80-86		

a, b and c refer to reactions run in refluxing acetonitrile in the presence of $TFA/HCI/CH_3COOH$ respectively. d - reactions run at rt e - reactions run at O^OC . f - unidentified products. g - yield of the corresponding iminium chloride. h - reactions run in refluxing acetic acid. i - for all the compounds satisfactory spectral data or comparison with authentic samples have been obtained.

$$R-N=CH-R^1$$

	R
<u>6 a</u>	C6H5
<u>6 b</u>	С _б н ₄ осн ₃ (р)
6 c	Н
<u>6đ</u>	ся ³

of products as foams and in lower yields in the case of the reactions with imidazolidines.³

As exazolidines exhibit tautomerism with imines and under acidic conditions provide iminium cations⁶, the carbon transfer capability of simple imines has been studied. Acyclic imines $\frac{4a-g}{a}$ with tryptamine form β -carboline derivatives, irrespective of the nature of the amine being eliminated.

The overall reaction of azolidines with tryptamine represents the transfer of a —CHR fragment of the azolidines to a position between the nucleophilic centres.

C-2 and the amino group of tryptamine. The reaction could be visualized to proceed through a mechanism similar to the one proposed for imidazolidines. As 2-substituted oxazolidines and thiazolidines can be procured via addition of carbanions to appropriate azolines/azolinium cations, the process allows for the possibility of a wide variation in the nature of C-2 fragment in the masked aldehydes which may be either inaccessible or accessible with difficulty for Pictet-Spengler synthesis. The utility of these heterocycles in the synthesis of indole and isoquinoline alkaloids is being investigated.

ACKNOWLEDGEMENT We thank the CSIR, New Delhi, for financial assistance.

REFERENCES AND NOTES

- 1 H. Singh and R. Sarin, <u>Heterocycles</u>, 1984, 22, 1101.
- 2 H. Bieraugel, R. Flemp, H.C. Hiemstra and U.K. Fandit, <u>Tetrahedron</u>, 1983, 39, 3971 and references therein.
- 3 H.C. Hiemstra, H. Bieraugel, M. Wijnberg and U.K. Pandit, <u>Tetrahedron</u>, 1984, <u>39</u>, 3981 and references therein.
- 4 H. Bieraugel, R. Flemp and U.K. Fandit, <u>Tetrahedron</u>, 1983, <u>39</u>, 3987.
- J.A. Joule and G.F. Smith, "Heterocyclic Chemistry", 2nd Ed., ELBS and WNRC, London, 1979, 186.
- 6 T.H. Fife and J.E.C. Hutchins, <u>J. Org. Chem.</u>, 1980, <u>45</u>, 2099 and references therein.

Received, 3rd September, 1984