SELECTIVE HALOGENATION OF 4-OXO-4,5,6,7-TETRAHYDROINDOLES TO 5-HALO-4-OXO-4,5,6,7-TETRAHYDROINDOLES WITH COPPER(II) HALIDES

Masakatsu Matsumoto\*, Yasuko Ishida, and Nobuko Watanabe Sagami Chemical Research Center, Nishi-Ohnuma 4-4-1, Sagamihara, Kanagawa 229, Japan

<u>Abstract</u> —— Halogenation of 4-oxo-4,5,6,7-tetrahydroindoles with copper(II) bromide or copper(II) chloride gave selectively 5-halo-4oxo-4,5,6,7-tetrahydroindoles, which were easily transformed to 4-hydroxyindoles by the action of lithium halide/lithium carbonate in dimethylformamide.

One of attractive synthetic routes to 4-substituted indoles is to use 4-oxo-4,5,6,7-tetrahydroindole (<u>1</u>) as a key intermediate. The synthon of indole <u>1</u> has, however, been limited to use, because oxidative aromatization of the cyclohexene skeleton of type <u>1</u> compound requires drastic reaction conditions and is often fruitless.<sup>1,2,4</sup> It is thought that a practical step solving these problems is to oxidize <u>1</u> into 5-halo-4-oxo-4,5,6,7-tetrahydroindoles (<u>2</u>) prior to transformation of the carbonyl group of <u>1</u> to various functionalities. We report here that the halogenation of <u>1</u> to <u>2</u> was attained by the use of copper(II) halides and shows the facile synthesis of 4-hydroxyindoles (<u>5</u>) from <u>1</u> through <u>2</u>, as a preliminary work to use 5-haloindoles <u>2</u> for a synthetic intermediate of 4substituted indoles.



When 4 - 0x0 - 1 - 2 - toluenesulfonyl-4,5,6,7 - tetrahydroindole (<u>la</u>) was heated withtwo equivalents of copper(II) bromide in ethyl acetate for 1 h, 5-bromo-4-oxo-1-p-toluenesulfonyl-4,5,6,7-tetrahydroindole (<u>2a-Br</u>) was produced in a 98% yield.The other <u>N</u>-substituted indoles <u>lb</u> - <u>ld</u> were similarly brominated with copper(II) bromide as shown in Table I. Free indole <u>le</u> (R = H) gave scarcely desiredbromide <u>2e-Br</u> by the use of CuBr<sub>2</sub>. As a solvent, acetic acid, chloroform,dimethylformamide (DMF), and so on were usable in place of ethyl acetate,though the efficiency of the bromination decreased. Usage of excess CuBr<sub>2</sub> tendedto form 5,5-dibromoindoles <u>3</u>; treatment of <u>la</u> with 4 equivalents of CuBr<sub>2</sub> inethyl acetate gave exclusively 5,5-dibromoindole <u>3a-Br</u>. Another reagent, phenyltrimethylammonium perbromide (PhNMe<sub>3</sub>.Br<sub>3</sub>) was less effective than CuBr<sub>2</sub> for thebromination of <u>l</u> to <u>2</u>.<sup>5</sup> Analogous reagent, pyridinium perbromide (C<sub>5</sub>H<sub>5</sub>N.HBr<sub>3</sub>),gave somewhat improved result (yield of <u>2a-Br</u>: 76%).



Table I. Bromination of 4-oxo-4,5,6,7-tetrahydroindoles (<u>1</u>) to 5-bromo-4-oxo-4,5,6,7-tetrahydroindoles (2) with copper(II) bromide.\*

| Indole ( <u>1</u> )<br>R |               | Solvent       | Time<br>(h) |                  | Indole ( <u>2</u> )<br>Mp(°C) |    | Yield(%)** |  |
|--------------------------|---------------|---------------|-------------|------------------|-------------------------------|----|------------|--|
| p-Toluenesulfonyl        | ( <u>la</u> ) | Ethyl acetate | 1           | ( <u>2a-Br</u> ) | 154-5                         | 98 | (98)       |  |
|                          |               | Chloroform    | 4           |                  |                               | 82 | (90)       |  |
|                          |               | Acetic acid   | 4           |                  |                               | 67 | (74)       |  |
|                          |               | 50% aq. AcOH  | 4           |                  |                               | 83 | (95)       |  |
|                          |               | DMF           | 3           |                  |                               | 43 | (88)       |  |
| Benzenesulfonyl          | ( <u>1b</u> ) | Ethyl acetate | 1           | ( <u>2b-Br</u> ) | 101-2                         | 97 | (97)       |  |
| Methanesulfonyl          | ( <u>lc</u> ) | Ethyl acetate | 3           | ( <u>2c-Br</u> ) | 113.5                         | 89 | (89)       |  |
| Benzoyl                  | ( <u>1d</u> ) | Ethyl acetate | 2           | ( <u>2d-Br</u> ) | 130-1                         | 74 | (90)       |  |

 \* All the reactions were carried out by the use of two equivalents of CuBr<sub>2</sub> at refluxing temperature.

\*\* Figures in parenthesis mean selectivity of bromides 2.

Chlorination of indoles <u>la</u> and <u>lb</u> to corresponding 5-chloroindoles <u>2</u> was achieved by the use of copper(II) chloride. As shown in table II, 50% aqueous acetic acid was far more favorable than acetic acid, chloroform, or ethyl acetate as the solvent used for the chlorination. Copper(II) chloride also converted N-benzylindole <u>lf</u> and free indole <u>le</u> to the corresponding 5-chloroindoles <u>2f-C1</u> and <u>2e-C1</u> in moderate yields. These results were different from the case with copper(II) bromide (<u>vide supra</u>). Iron(III) chloride was of no use for the present purpose, though it is known as one of typical chlorinating reagents of ketones.<sup>6</sup> Sulfuryl chloride is also a convenient reagent for  $\alpha$ -chlorination of ketones.<sup>7</sup> It was, however, not fit for use, because it mainly led to 2-chloro-4-oxo-tetrahydroindoles <u>4</u> instead of 5-chloroindoles <u>2</u> (see Experimental).





Table II. Chlorination of 4-oxo-4,5,6,7-tetrahydroindoles (<u>1</u>) to 5-chloro-4oxo-4,5,6,7-tetrahydroindoles (2) with copper(II) chloride.\*

| Indoles (1)       |               | Solvent       | Time | Indole (2)       |          |            |      |
|-------------------|---------------|---------------|------|------------------|----------|------------|------|
| R                 |               |               | (h)  |                  | Mp(°C)   | Yield(%)** |      |
| p-Toluenesulfonyl | ( <u>la</u> ) | 50% aq. AcOH  | 4    | ( <u>2a-Cl</u> ) | 152-3    | 86         | (86) |
|                   |               | АсОн          | 7    |                  |          | 32         | (48) |
|                   |               | Ethyl acetate | 5    |                  |          | 2          | (68) |
|                   |               | (Chloroform)  | ļ    |                  |          |            |      |
| Benzenesulfonyl   | ( <u>lb</u> ) | 50% aq. AcOH  | 7    | ( <u>2b-C1</u> ) | 139.5    | 92         | (92) |
| Н                 | ( <u>le</u> ) | 50% aq. AcOH  | 4    | ( <u>2e-C1</u> ) | 168(dec) | 46         | (69) |
| Benzyl            | ( <u>lf</u> ) | 50% aq. AcOH  | 12   | ( <u>2f-C1</u> ) | 90.5-1.0 | 79         | (81) |

\* All the reactions were carried out by the use of 2.2 equivalents of CuCl<sub>2</sub> at refluxing temperature.

\*\* Figures in parenthesis mean selectivity of 2.

Stoichiometry of the present halogenation is shown as an equation:

 $1 + 2 \operatorname{CuX}_2 \longrightarrow 2 + 2 \operatorname{CuX} + \operatorname{HX}$ Thus, considering that copper(I) halide is easily oxidized to copper(II) halide with dioxygen (O<sub>2</sub>) in the presence of HX, one might think of a catalytic reaction:  $1 + \operatorname{HX} + 1/2 \operatorname{O_2} \xrightarrow{\operatorname{"Cu"}} 2 + \operatorname{H_2O}$ This idea was proved as follows: when indole <u>1a</u> (1.0 g) was heated with copper (II) bromide (0.1 g) under an oxygen atmosphere in 50% aq. acetic acid (10 mL) containing HBr (0.33 g) for 7 h, 5-bromoindole <u>2a-Br</u> was produced in a 72% yield (selectivity: 90%).

The results described here show that 5-halo-4-oxo-4,5,6,7-tetrahydroindoles (2) are now easily accessible.<sup>8</sup> Next, we examined dehydrohalogenation of 2 to 4-hydroxyindoles (5) as a preliminary work to use 2 for the synthesis of 4substituted indoles. The aromatization of 2 was attained by the use of lithium salt/lithium carbonate in DMF as shown in Table III. This route (1 + 2 + 5) is useful for the preparation of N-protected 4-hydroxyindoles, which was, of course, able to be deprotected. Typical procedures to prepare 5-bromoindoles 2-Br, 5,5-dibromoindoles 3-Br, 5-chloroindoles 2-C1, 2-chloroindoles 4, and 4-hydroxyindoles 5 are described in the following experimental section.



Table III. Synthesis of 4-hydroxyindoles (5) from 5-halo-4-oxo-4,5,6,7-tetrahydroindoles (2).

| Haloindole (2)    |          |                           | Time |                | Hydroxyind  | ole (5)  |
|-------------------|----------|---------------------------|------|----------------|-------------|----------|
|                   | <u>x</u> | R                         | (h)  |                | Mp(°C)      | Yield(%) |
| ( <u>2a-Br</u> )  | Br       | p-Toluenesulfony1         | 1    | ( <u>5 a</u> ) | 143.5-144.5 | 94       |
| ( <u>2a-Br</u> )* | <b>*</b> |                           | 2    |                |             | 98       |
| ( <u>2a-Cl</u> )  | Cl       | <u>p</u> -Toluenesulfony1 | 3    | ( <u>5 a</u> ) |             | 98       |
| ( <u>2b-Br</u> )  | Br       | Benzenesulfonyl           | 1    | ( <u>5b</u> )  | 130.0-130.7 | 94       |
| ( <u>2c-Br</u> )  | Br       | Methanesulfonyl           | 1.5  | ( <u>5c</u> )  | 109.0-110.0 | 93       |
| ( <u>2d-Br</u> )  | Br       | Benzoyl                   | 1    | ( <u>5a</u> )  | 149.0-150.0 | 98       |

\* Unless otherwise stated, the dehydrohalogenation was carried out under the following conditions; <u>2</u>:LiBr:LiCO<sub>3</sub> = 1:1.05:1.05, DMF, N<sub>2</sub> or Ar atmosphere, 150°C. \*\*In place of LiBr, LiCl was used. EXPERIMENTAL

<u>5-Bromo-4-oxo-N-(p-toluenesulfonyl)-4,5,6,7-tetrahydroindole</u> (2a-Br) Copper(II) bromide(1.55g, 6.92 mmol) was stirred together with 4-oxo-<u>N-(p-toluenesulfonyl)-4,5,6,7-tetrahydroindole (1a)</u> (1.00 g, 3.46 mmol) in ethyl acetate (10 mL) under an argon atmosphere at refluxing temperature for 45 min. From the hot solution, copper(I) bromide was filtered off. The mother liquid was diluted with  $CH_2Cl_2$ , washed with  $H_2O$ , dried over MgSO<sub>4</sub>, and concentrated. The residue was chromatographed on silica gel. Elution with  $CH_2Cl_2$ -hexane (1:1) gave the 5-bromoindole <u>2a-Br</u> in a 98% yield (1.25 g). Colorless prisms melted at 154 - 155°C (from ethyl acetate). NMR(CDCl<sub>3</sub>) 2.32-2.54 (m, 2H), 2.42 (s, 3H), 3.00-3.18 (m, 2H), 4.46 (t, J=4.2Hz, 1H), 6.61 (d, J=3.9Hz, 1H), 7.20-7.84 (m, 5H)ppm. IR(KBr) 1680, 1600, 1393, 1180, 1122 cm<sup>-1</sup>. Mass(m/z,%) 369 (M<sup>+</sup>, 29), 367 (M<sup>+</sup>, 29), 155 (47), 106 (90), 91 (100).

<u>5,5-Dibromo-4-oxo-N-(p-toluenesulfonyl)-4,5,6,7-tetrahydroindole (3a-Br)</u> A solution of 4-oxo-N-(p-toluenesulfonyl)-4,5,6,7-tetrahydroindole (la) (1.00 g, 3.46 mmol) and copper(II) bromide (3.20 g, 14.3 mmol) in ethyl acetate (15 mL) was refluxed for 6 h. The solution was diluted with  $CH_2Cl_2$  (80 mL) and filtered to remove copper(I) bromide. The mother liquid was washed with  $\rm H_2O$ , dried over MgSO<sub>4</sub>, and concentrated. The residue was chromatographed on silica gel. Elution with  $CH_2Cl_2$  gave the dibromoindole <u>3a-Br</u> in a 99% yield (1.53 g). Colorless prisms melted at 152.0 - 153.2°C (from ethyl acetate). NMR(CDC1<sub>2</sub>) 2.43 (s, 3H), 2.92-3.18 (m, 4H), 6.65 (d, J=3.9Hz, 1H), 7.20-7.80 (m, 5H) ppm. IR(KBr) 1690, 1595, 1375, 1187, 1175 cm<sup>-1</sup>. Mass (m/z,%) 449 (M<sup>+</sup>, 1.8), 447 (M<sup>+</sup>, 3.3), 445 (M<sup>+</sup>, 1.7), 155 (34), 106 (84), 91 (100). 5-Chloro-4-oxo-N-(p-toluenesulfonyl)-4,5,6,7-tetrahydroindole (2a-Cl) A solution of 4-oxo-1-p-toluenesulfony1-4,5,6,7-tetrahydroindole (1a) (1.00 g, 3.46 mmol) and copper(II) chloride (1.02 g, 7.61 mmol) in 50% aq. acetic acid (10 mL) was refluxed under an argon atmosphere for 3.5 h. After removal of copper(I) chloride, the solution was poured into  $H_20$  and extracted with  $CH_2Cl_2$ . The organic layer was washed with  $NaHCO_3$  aq. solution, dried over  $MgSO_4$ , and then concentrated. Chromatographic purification of the residue [Si0<sub>2</sub>/CH<sub>2</sub>Cl<sub>2</sub>-hexane (1:1)] afforded the 5-chloroindole 2a-Cl in an 86% yield (0.96 g). Colorless prisms melted at 152 - 153°C (from ethyl acetate). NMR(CDCl<sub>3</sub>) 2.36-2.58 (m, 2H), 2.46 (s, 3H), 3.16-3.24 (m, 2H), 4.44 (t, J=4.0 Hz, 1H), 6.68 (d, J=3.2Hz, 1H), 7.28-7.48 (m, 3H), 7.74-7.87 (m, 2H)ppm. IR(KBr) 1680, 1600, 1387, 1178 cm<sup>-1</sup>. Mass(m/z,%) 323 (M<sup>+</sup>, 26), 106 (100), 91 (66).

 $\frac{2-\text{Chloro}-4-\text{oxo}-\text{N}-(\text{p-toluenesulfonyl})-4,5,6,7-\text{tetrahydroindole}}{(4a)}$  To a solution of 4-oxo-  $\frac{\text{N}-(\text{p-toluenesulfonyl})-4,5,6,7-\text{tetrahydroindole}}{(1a)} (1.00 \text{ g}, 3.46 \text{ mmol}) \text{ in } \text{CH}_2\text{Cl}_2 (10 \text{ mL}), \text{ a}}$ solution of surfuryl chloride (0.52 g, 3.85 mmol) in  $\text{CH}_2\text{Cl}_2 (5 \text{ mL})$  was added at 0°C and stirred for 1 h at room temperature. The solution was stirred with K<sub>2</sub>CO<sub>3</sub> (2.0 g) for 30 min and was concentrated. The residue was chromatographed on silica gel. Elution with  $CH_2Cl_2$  afforded the 2-chloroindole <u>4a</u> in a 56% yield. Colorless granules melted at 189.0 - 190.0°C (from  $CH_2Cl_2$ ). NMR(CDCl\_3) 1.90-2.46 (m, 4H), 2.32 (s, 3H), 3.10 (m, 2H), 6.35 (s, 1H), 7.16-7.80 (m, 4H) ppm. IR(KBr) 1678, 1600, 1388 cm<sup>-1</sup>. Mass(m/z,%) 323 (M<sup>+</sup>, 16), 155 (61), 91 (100). <u>4-Hydroxy-N-(p-toluenesulfonyl)indole</u> (<u>5a</u>) A solution of 5-bromo-4-oxo-N-(<u>p</u>-toluenesulfonyl)-4,5,6,7-tetrahydroindole (<u>2a-Br</u>) (200 mg, 0.543 mmol) in DMF (10 mL) was heated together with LiBr (50 mg, 0.576 mmol) and Li<sub>2</sub>CO<sub>3</sub> (79 mg, 0.572 mmol) under a nitrogen atmosphere at 150°C for 1 h. The reaction mixture was poured into aq. NH<sub>4</sub>Cl solution and was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The organic layer was washed twice with H<sub>2</sub>O, dried over MgSO<sub>4</sub>, and concentrated. The residue was chromatographed on silica gel and eluted with CH<sub>2</sub>Cl<sub>2</sub>-ethyl acetate (100:1) to give the 4hydroxyindole <u>5a</u> in a 94% yield (145 mg). Colorless prisms melted at 143.5-144.5°C (from ethyl acetate-hexane). NMR(CDCl<sub>3</sub>) 2.31 (s, 3H), 5.25 (broad s, 1H), 6.48-7.84 (m, 9H) ppm. IR(KBr) 3480, 1600, 1500, 1365, 1127 cm<sup>-1</sup>. Mass(m/z,%) 287 (M<sup>+</sup>, 33), 132 (100), 91 (27).

## REFERENCES AND NOTES

- a) W. A. Remers, R. H. Roth, G. J. Gibs, and M. J. Weiss, <u>J. Org. Chem</u>., 1971, <u>36</u>, 1232.
  b) W. A. Remers and M. J. Weiss, <u>ibid.</u>, 1971, <u>36</u>, 1241.
- 2. A successful example is the transformation of  $\underline{1}$  to 4-hydroxyindole, which is s key intermediate to synthesize an arrhythmic agent, pindolol, by the catalysis of a platinum metal, though inactivation of the catalyst is a distressful problem.<sup>3</sup>
- S. Torii, K. Uneyama, T. Onishi, Y. Fujita, M. Ishiguro, and T. Nishida, <u>Chem. Letters</u>, 1980, 1603, and references therein.
- It has recently been reported that cyclic enaminones are oxidized to arenes by Hg(II) under mild conditions: H. Iida, Y. Yuasa, and C. Kibayashi, <u>Synthesis</u>, 1982, 471, and <u>Tetra</u>. <u>Letters</u>, 1982, 23, 3591.
- 5. Reexamination gave similar results to those reported by Remers.  $^{1}$
- 6. Y. Nakatani, K. Kakinuma, and M. Matsui, Tetra. Letters, 1967, 4085.
- 7. For a review, see 'Reagents for Organic synthesis', eds. by L. F. Fieser and M. Fieser, John Wiley & Sons Inc., New York, 1967, Vol. 1, 1128.
- 8. The starting material, 4-oxo-4,5,6,7-tetrahydroindole (<u>le</u>), can be easily prepared from 1,3-cyclohexanedione and chloroacetaldehyde.<sup>9</sup> <u>N</u>-Protected ones (<u>la</u> <u>lf</u>) are also
- $^{\prime}$  selectively synthesized by condensation of an anion of <u>le</u> and the corresponding halides.
- 9. M. Matsumoto and N. Watanabe, Heterocycles, 1984, 22, 2313.

Received, 15th October, 1984

1