CYCLIC PEROXIDES. 11. CHEMILUMINESCENT REACTION MECHANISM OF N-METHYL-9-(DICARBOALKOXYMETHYL)ACRIDANES

Nobutaka SUZUKI, Mitsumasa NAKAMINAMI, Toshio TSUKAMOTO,

Kathuhiko IWASAKI and Yasuji IZAWA

Department of Industrial Chemistry, Faculty of Engineering,

MIE University, Tsu, MIE 514, JAPAN

A new chemiluminescent system (1) which has a -CH-C- function in it and gives a very effective fluorescent product, N-methylacridone (2), was found to give chemiluminescence light emission under basic oxidative conditions. One mole of 1 could be oxidized twice (first at i and then at ii).

Hence, it could give two photons a mole. The mechanistic investigation was performed.

N-Methyl-9-(dicarboalkoxymethyl)acridanes (I: R = Me, Et, t-Bu, and Ph: 0.5×10^{-2} M) gave long-lasting chemiluminescence ($\tau_{\frac{1}{2}} \sim 40$ h) with moderate intensity (Φ_{CL} : $10^{-4} \sim 10^{-5}$ einstein/mole) at 60°C in a basic dimethyl sulfoxide (DMSO) solution upon oxidized by molecular oxygen.

The final product was 2, which was proved to be the emitting species (emitter) after a first strong flash. t-Butyl formate (3), which was formed by t-BuO⁻-anion-induced transesterification of methyl, ethyl, and phenyl formates originally generated from the CL reactions under the conditions, was isolated as the product. Evolution of CO_2 was detected also.

Table 1. Chemiluminescence of la-d and Fluorescence of 2 at $60\,^{\circ}\text{C}$ in DMSO

Substrate ^a)	Temp.	Cr _{p)}	FL ^{c)} of 1		Φ _{CL} x 10 ^{5α}	Product (%) ^{e)}
	(°C)	λ _{ma.x} (nm)	$\lambda_{\max}(O_2)$ (nm)	λ _{max} (Ar)(nm)	(einstein/mol)	(2)
la	60	430	435	411	8.20	50.4
1 b	60	430	435	359	7.26	18.0
1c	60 43	430 ^f)	43 5	465 	1.27 0.33	5.3
1 d	60				0.58	
2	60		430 ^{b)} 435 ^{c)}		_	

a) Initial concentrations: $\{1\} = 5.0 \times 10^{-3} \text{ M}; \text{ [t-BuOK]} = 1.0 \times 10^{-1} \text{ M}. \text{ b) Slit-width: } 45 \text{ nm. c)}$ Slit-width: 24 nm. d) Relative to the Hasting's standard (ref. 4). e) Isolated yields. f) ---: no data.