CYCLIC PEROXIDES. 11. CHEMILUMINESCENT REACTION MECHANISM OF N-METHYL-9-(DICARBOALKOXYMETHYL)ACRIDANES Nobutaka SUZUKI, Mitsumasa NAKAMINAMI, Toshio TSUKAMOTO, Kathuhiko IWASAKI and Yasuji IZAWA Department of Industrial Chemistry, Faculty of Engineering, MIE University, Tsu, MIE 514, JAPAN A new chemiluminescent system (1) which has a -CH-C- function in it and gives a very effective fluorescent product, N-methylacridone (2), was found to give chemiluminescence light emission under basic oxidative conditions. One mole of 1 could be oxidized twice (first at i and then at ii). Hence, it could give two photons a mole. The mechanistic investigation was performed. N-Methyl-9-(dicarboalkoxymethyl)acridanes (I: R = Me, Et, t-Bu, and Ph: 0.5×10^{-2} M) gave long-lasting chemiluminescence ($\tau_{\frac{1}{2}} \sim 40$ h) with moderate intensity (Φ_{CL} : $10^{-4} \sim 10^{-5}$ einstein/mole) at 60°C in a basic dimethyl sulfoxide (DMSO) solution upon oxidized by molecular oxygen. The final product was 2, which was proved to be the emitting species (emitter) after a first strong flash. t-Butyl formate (3), which was formed by t-BuO⁻-anion-induced transesterification of methyl, ethyl, and phenyl formates originally generated from the CL reactions under the conditions, was isolated as the product. Evolution of CO_2 was detected also. Table 1. Chemiluminescence of la-d and Fluorescence of 2 at $60\,^{\circ}\text{C}$ in DMSO | Substrate ^a) | Temp. | Cr _{p)} | FL ^{c)} of 1 | | Φ _{CL} x 10 ^{5α} | Product (%) ^{e)} | |--------------------------|----------|------------------------|-------------------------------------|---------------------------|------------------------------------|---------------------------| | | (°C) | λ _{ma.x} (nm) | $\lambda_{\max}(O_2)$ (nm) | λ _{max} (Ar)(nm) | (einstein/mol) | (2) | | la | 60 | 430 | 435 | 411 | 8.20 | 50.4 | | 1 b | 60 | 430 | 435 | 359 | 7.26 | 18.0 | | 1c | 60
43 | 430
^f) | 43 5 | 465
 | 1.27
0.33 | 5.3
 | | 1 d | 60 | | | | 0.58 | | | 2 | 60 | | 430 ^{b)} 435 ^{c)} | | _ | | a) Initial concentrations: $\{1\} = 5.0 \times 10^{-3} \text{ M}; \text{ [t-BuOK]} = 1.0 \times 10^{-1} \text{ M}. \text{ b) Slit-width: } 45 \text{ nm. c)}$ Slit-width: 24 nm. d) Relative to the Hasting's standard (ref. 4). e) Isolated yields. f) ---: no data.