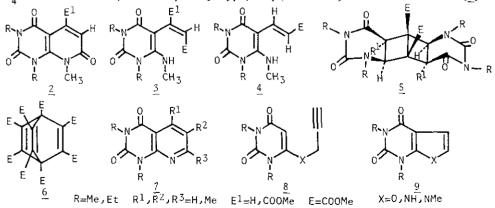
SYNTHESIS OF FUSED URACIL DERIVATIVES


Tsuneo Itoh, Yasuo Tomii and Haruo Ogura School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo 108, Japan Norio Kawahara and Takako Nakajima Hokkaido Institute of Pharmaceutical Sciences, 7-1, Katsuraoka-cho, Otaru, Hokkaido, 047-02, Japan

Uracil derivatives are useful reagents for the synthesis of fused pyrimidine derivatives having biological activity. We found a few interesting reactions and a new ring system derived from uracil derivatives.

1) Treatment of 6-methylamino-1,3-dialkyluracils($\underline{1}$, R=Me, Et) and dimethyl acetylenedicarboxylate(DMAD) gave $\underline{2}(E^1=COOMe)$ and $\underline{3}(E^1=E^2=COOMe)$. Irradiation of $\underline{1}$ and methyl propiolate gave $\underline{2}(E^1=H)$, $\underline{3}(E^1=H)$, $\underline{4}(E^1=COOMe)$ and 1,3,5-benzene tricarboxylic acid methylester. Photocyclization of 1,3-dimethyluracil(or 1,3-dimethylthymine) with DMAD under similar conditions afforded a new 2+2+2 cycloaddition product($\underline{5}$) and bicyclo[2,2,2]octa-2,5,7-triene-1,2,3,4,5,6,7,8-octacarboxylic acid octamethylester 6.

2) 1,3-dialkylpyrido[2,3-d]pyrimidine derivatives($\underline{7}$, R^1 , R^2 , R^3 =H, Me) were conveniently prepared from 6-substituted allylaminouracils by PdCl₂-CuCl-O₂ catalyzed oxidative cyclization.

3) pyrrolo- and furopyrimidine derivative($\underline{9}$, X=0, NH, NMe) were prepared by conc. H₂SO₄ treatment of 1,3-dimethyl-6-propynyloxy(or amino)uracil derivatives($\underline{8}$).

