GENERAL SYNTHESIS AND SYNTHETIC APPLICATION OF 2,5-DIHYDROTHIOPHENES

Haruki Machida, Juzo Nakayama, and Masamatsu Hoshino Department of Chemistry, Faculty of Science, Saitama University, Urawa, Saitama 338, Japan

Diketo sulfides (<u>1</u>) are easily prepared from α -haloketones and sodium sulfide. Reduction of (<u>1</u>) by low valent titanium prepared from TiCl₄ and Zn gave a wide variety of symmetrically substituted 2,5-dihydrothiophenes (<u>2</u>) in good yields. In a similar way, unsymmetrically substituted 2,5-dihydrothiophenes (<u>4</u>) are also prepared from diketo sulfides (<u>3</u>) which are obtainable from α -halo- and α -mercaptosulfides.

Oxidation of (<u>1</u>) by m-CPBA followed by thermolysis of the resulting sulfones furnished a variety of 1,3-dienes in good overall yields. Reduction of the mesosulfide (<u>5</u>) afforded the cis-dihydrothiophene (<u>6</u>) stereospecifically. Oxidation of (<u>6</u>) and subsequent thermolysis of the resulting sulfone gave the 1,3-diene (<u>7</u>) in a stereospecific manner.

When reduction of $(\underline{1})$ were done under the controlled conditions, 3,4-dihydrothiolanes ($\underline{8}$) were obtained in good yields.

