A NOVEL SYNTHESIS OF ASPIDOSPERMA ALKALOIDS USING SIMULTANEOUS CYCLIZATION AT 2 AND 3 POSITIONS OF INDOLE RING

Iwao Utsunomiya and Mitsutaka Natsume
Research Foundation Itsuu Laboratory
2-28-10 Tamagawa, Setagaya-ku, Tokyo 158, Japan

A formal synthesis of (\pm) -vindorosine $(\underline{9})$ was performed by a novel type of cyclization reaction $(\underline{6a},\underline{6d} + \underline{7a},\underline{7b})$ which consists of two carbon-carbon bond formations at the C-2 and C-3 positions in the indole ring. The key compounds $(\underline{6a})$ and $(\underline{6d})$ were prepared as follows. The ketal $(\underline{1})$ was reduced with a bulky reducing reagent, NaAl $(OCH_2CH_2OMe)_2H_2$, in the presence of $ClCOOCH_2Ph$ in THF to afford 1,6-dihydropyridine derivative $(\underline{2})$, which was submitted to our oxygenative nucleophile introduction rection $(\underline{1})$ to form compound $(\underline{3})$. $(\underline{3})$ was converted to $(\underline{5a})$ via $(\underline{4})$ in six steps and the desired compound $(\underline{6a})$ was obtained from $(\underline{5a})$ through $(\underline{5c})$. The methanesulfonate of $(\underline{6a})$ was treated with $(Me_3Si)_2NK$, in THF at (-70)°C at first then at room temperature for 1 h to give the pentacyclic compound $((\underline{7a}))$. Alternatively, $(\underline{6d})$ derived from $(\underline{5a})$ by way of $(\underline{5d})$ in $(Me_3Si)_2NK$, THF; ii) $(Me_3Si)_2NK$, iii) $(Me_3Si)_2NK$, was

subjected to the same cyclization reaction using t-BuOK in place of $(Me_3Si)_2NK$ to furnish a more functionalized compound (7b). 7a and 7b were methylated with CH_2O and $NaBH_3CN$ to afford 8a and 8b, which were identified with Büchi's samples which were transformed to (\pm) -vindorosine (9).

REFERENCES

- 1) M. Natsume, et al, Tetrahedron Lett., 3473 (1979).
- 2) G. Büchi, et al, J. Am. Chem. Soc., 93, 3299 (1971).