STEREOSELECTIVE SYNTHETIC STUDIES ON BIOLOGICALLY ACTIVE NATURAL SPIROKETALS

Chuzo Iwata, Kohji Hattori, Masahiro Fujita, Shuji Uchida, and Takeshi Imanishi

Faculty of Pharmaceutical Sciences, Osaka University
1-6 Yamada-oka, Suita, Osaka 565, Japan

Spiro-ketal moiety plays a very important role as structural elements of many biologically active natural products. Although several construction methods for spiro-ketal skeleton have been developed, little is known concerning successful stereocontrol at the spiro carbon center.

(E) - and (Z)-2-Methyl-1,6-dioxaspiro[4.5]decane (1-E and 1-Z), isolated as an insect pheromone of the common wasp, was efficiently synthesized in diastereoisomerically or optically pure form via a highly stereocontrolled intramolecular Michael addition of the hydroxyl group to unsaturated sulfoxide moiety of 2 and 3.

Acid-catalyzed or bromonium ion mediated cyclization of $\underline{2}$ and $\underline{3}$ gave diastereoisomeric mixtures of dioxaspiro products with somewhat stereoselectivity. On the other hand, the Michael-type cyclization of $\underline{2}$ and $\underline{3}$ by use of KH afforded each sole cyclized product, $\underline{4}$ and $\underline{5}$, respectively, which easily converted into $\underline{1-E}$ and $\underline{1-Z}$ in good yield. The excellent stereoselectivity in this reaction could be interpreted in terms of a stable chelation mediated by the potassium cation as shown in structure 6.