PHOTOCHEMISTRY OF THE NITROGEN-CONTAINING THIOCARBONYL SYSTEM

Kazuaki Oda, Eiichi Yoshida, and Minoru Machida Faculty of Pharmaceutical Sciences, Higashi-Nippon-Gakuen University Ishikari-Tobetsu, Hokkaido 061-02 Yuichi Kanaoka Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060

The well-known carbonyl photochemistry has been extended to a nitrogen-carbonyl photochemistry by exploring excited reactivities of the imide system, in which a carbonyl chromophore is in cojunction with an amide group. On the other hand, changing a key element in the ketone chromophores from oxygen to sulfur introduced the unique thione photochemistry. To develop a frontier of organic photochemistry, we have explored a new amalgamation of such a key chromophore and a key atom, <u>i.e.</u>, imide and sulfur.

First, intramolecular hydrogen abstraction was tested with a series of N-alkylthiophthalimides, which were, after irradiation, recovered nearly unchanged. However, cycloaddition of $\underline{1}$ to $\underline{2}$ took place giving a thietane $\underline{3}$ accompanyied by an unsaturated product $\underline{4}$, probably formed by photolysis of the initially formed $\underline{3}$, indicative of promoted photoreactivity of the aromatic imide-thietanes. When stilbene $\underline{6}$ was used, N-methylmonothiophthalimide $\underline{5}$ afforded two stereoisomers of thietanes. In addition to $\underline{7}$, a mixture of products were obtained which turned out to be consisting of 1,2-dithiane $\underline{8}$ and other dithianes, probably formed by subsequent fisson of $\underline{7}$ followed by addition with $\underline{5}$, in analogy with the reactions of thiones. Photoreaction of thioimide derivative gave two stereoisomers of pyridoisoindoles $\underline{11}$, which were probably formed via intramolecular thietane intermediate

