a: R₁=R₂=H b: R₁=H, R₂=CH₃ c: R₁=C₆H₅, R₂=H

d: R1=C6H5, R2=CH3

SYNTHESIS OF PYRIDINE AND ISOQUINOLINE DERIVATIVES BY CYCLIZATION OF N-ACYLIMINIUM ION INTERMEDIATES

Shinzo Kano, Yoko Yuasa, Tsutomu Yokomatsu, and Shiroshi Shibuya
Tokyo College of Pharmacy, 1432-1 Horinouchi, Hachioji, Tokyo 192-03, Japan

 π Cyclization of α-oxaacyliminium ion intermediates, derived from the 3-arylpropionic acids (1 and 2), was applied to a synthesis of oxazolo[4,3-a]isoquinolines. Reduction of the carbamates (3a-3d) with DIBAH at -78°C or ozonolysis of the carbamates (3e-3g), followed by cyclization with formic acid afforded the corresponding oxazolo[4,3-a]isoquinolines (4). In a similar fashion, 6-aryloxazolo[4,3-a]isoquinolines (5) were obtained with high stereoselectivity. The method was extensively applied to a synthesis of pyrimido[6,1-a]isoquinolines (6).

This π cyclization reaction was applied to a synthesis of pyridine and 4-phenyldecahydroisoquinoline derivatives. Reduction of $\underline{7}$ and $\underline{8}$ with DIBAH, followed by cyclization with p-toluenesulfonic acid in CHCl $_3$ gave $\underline{9}$ and $\underline{10}$, respectively. Treatment of $\underline{11}$ with paraformaldehyde in formic acid yielded the 6-oxygenated $\underline{\text{trans-4a-phenyldecahydroisoquinoline}}$ ($\underline{12}$).

$$\frac{7}{a}$$
: R=CH₃, b: R=Et $\frac{9}{2}$

CH₃0

$$C_6H_5$$
 $NHCOOMe$
 $OHCO$
 C_6H_5
 $COOMe$
 $OHCO$