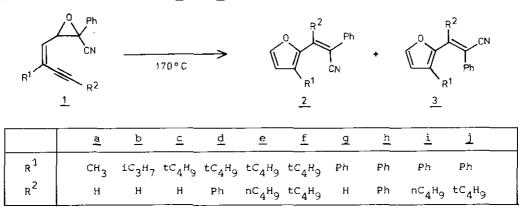
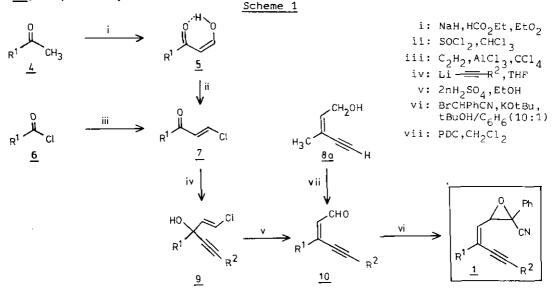
STEREOSELECTIVE SYNTHESIS AND THERMAL BEHAVIOR OF (Z)-EPOXYHEXENYNES: A SIMPLE AND GENERAL ROUTE TO 2-VINYLFURANS


Wolfgang Eberbach and Joachim Roser

Institut für Organische Chemie und Biochemie der Universität Albertstrasse 21, D-7800 Freiburg, West Germany

<u>Abstract</u> - An efficient approach for the synthesis of 2,3-disubstituted furans (2a-j/3a-j) is described by using the thermally induced rearrangement of epoxyhexenynes (1a-j) which are prepared by stereoselective synthesis of the (Z)-pentenynals 10 and subsequent Darzens reaction.

Recently we communicated first results on the unexpected formation of 2-vinyl-furans by short-time thermolysis of three 1-phenylepoxyhex-(3Z)-ene-5-ynes ^{1a}. This observation prompted us to further investigations in order to gain more insight into the mechanism of the unprecedented rearrangement and to elaborate the preparative aspects of the reaction as a possible alternative to specifically substituted furans ².


In this contribution we report on the straightforward synthesis of several derivatives of furan bearing bulky substituents not only at the vinyl group but also in 3-position (see structures 2 and 3).

The epoxyhexenynes <u>1a-j</u>, comprising the essential (Z)-geometry of the central double bond, have been selected as appropriate starting materials. In addition to preparative reasons, the substituents R^{1}/R^{2} were introduced to disclose steric

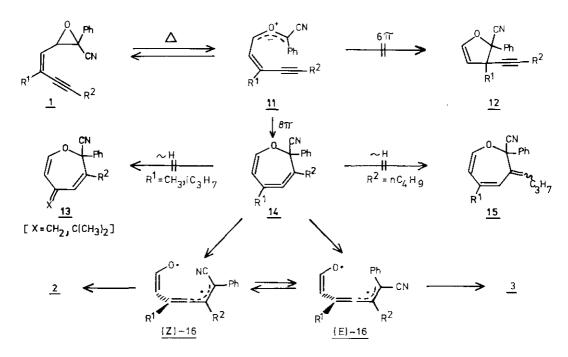
and/or electronic effects on the course of the rearrangement and (at least in the case of CH_3 , iC_3H_7 , nC_4H_9) for enabling intra- (or inter-³) molecular H-shifts in the potential cycloallene derivatives which have been proposed as high energy intermediates ¹ (see below). Furthermore, with the cyano group at the oxirane ring a significant decrease of the reaction temperature is expected providing more suitable conditions for the experimental work.

The synthesis of <u>1a-j</u> was accomplished as outlined in Scheme 1, using the pentenynals <u>10</u> as direct precursors. While <u>10a</u> was readily prepared by PDC-oxidation of commercially available 'cis-1-pentol' (<u>8a</u>), the other aldehydes were synthesized by sulfuric acid promoted transformation of the vinyl ethynyl carbinols <u>9</u>, the alkynylation products of the vinyl ketones <u>7</u> which themselves are accessible from <u>4</u> and <u>6</u>, respectively. Due to the directing effect of the substituents R¹ the conversion of <u>9</u> to <u>10</u> took place with remarkably high stereoselectivity leading almost exclusively (> 95%) to the desired (Z)-isomers. The concluding Darzens reaction to <u>1</u> resulted in the formation of the oxirane derivatives (ca. 60% yield) with the expected trans-configuration ⁴ of the bulky phenyl- and enyne-groups. The overall-yields of <u>1a-j</u> are between 20 and 53% (starting with <u>4c</u>, <u>9</u>, <u>6b</u> and <u>8a</u>, respectively) ⁵.

Compared to the previously studied 1-phenylepoxyhexenynes ^{1a} the thermal reactivity of the doubly activated derivatives <u>1a-j</u> is indeed much higher: thermolysis experiments, carried out in isooctane and followed by tlc, revealed a slow decrease of the educts already at 160 $^{\circ}$ C; after heating up to 190 $^{\circ}$ C quantitative conversion is reached within 5-10 min.

For preparative purposes a temperature of 170 $^{\circ}$ C is specially convenient resulting in reaction periods of 40 to 150 min. Only two products were formed in each case(73 - 92% according to ¹H-NMR analysis) which have been identified as 2-vinylfurans (2/3) ⁵. After work up by preparative tlc pure mixtures of the diastereomers were obtained (see Table 1) which could be separated in most cases either by repeated chromatography or by crystallization ⁵ (for some ¹H-NMR-data see Table 2).

	<u>1a</u>	<u>1b</u>	<u>1c</u>	<u>1d</u>	<u>1e</u>	<u>1f</u>	<u>1q</u>	<u>1h</u>	<u>1i</u>	<u>1j</u>
t [min] ^{b)}	40	50	60	60	80	150	60	60	90	90
(2+3) [%] ^{c)}	88	73	75	87	83	85	91	92	73	78
$\left\{\begin{array}{c} (2+3) (2\pi) \\ d \end{array}\right\}$	77	63	61	68	75	72	79	89	68	77
ratio <u>2:3</u>	90/10	89/11	92/8	56/44	38/62	6/94	89/11	53/47	44/56	7/93

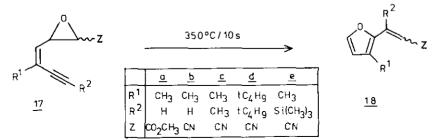

Table 1. Thermolysis of the Epoxyhexenynes $1a - j^{a}$

a) $2 \cdot 10^{-2}$ m in isooctane, 170 °C. ^{b)} Time for complete conversion. ^{c)} Crude products (¹H-NMR). ^{d)} After tlc.

Whereas the reaction rate of the transformations varies only slightly in this series, there is a significant influence of the substituents on the stereochemical outcome (Table 1). Especially R^2 exerts a marked effect on the ratio of the isomers 2/3: with $R^2 = H$ (a, b, c, g) formation of the vinylfurans 2 predominates by a factor of about 9, with $R^2 = Ph$ (d, h) or nC_4H_9 (e, i) the yields of both isomers are nearly the same, and with $R^2 = tC_4H_9$ (f, j) the furans 3 are by far the major products (ca. 14:1).

This observation is in agreement with a reaction mechanism involving heterocycloallenes (<u>14</u>) as central intermediates ¹ (see Scheme 2). One possible route to 2/3 implies the formation of the diradicals <u>16</u> which could proceed to either diastereomer, depending on the geometry of the allylic unit. It is reasonable to assume that with increasing size of the substituents R² the geometry of <u>(E)-16</u> is favored over <u>(2)-16</u>; consequently, the activation energy for the recyclisation affording isomer <u>3</u> should be lowered. Although this explanation is supported by a fairly good correlation between the ratio of 2/3 and the space-filling parameters for R² ⁶ the cyclopropene-carbene pathway ¹ cannot be unambigously excluded as a mechanistic alternative.

Scheme 2



Two comments have to be made concerning the formation and the reactivity of the cycloallenes <u>14</u>: (1) The electrocyclisation of the conjugated dipoles proceeds with complete periselectivity (8 π -reaction); there is no indication for the 6 π -process leading to 2,3-dihydrofurans <u>12</u> ^{7,8}. (2) The possible H-shifts in <u>14a</u>, <u>b</u>, <u>e</u>, <u>i</u> producing the more stable seven-membered derivatives <u>13</u>/<u>15</u> do not compete with the "normal" reaction sequence (to <u>2</u> and <u>3</u>, see Scheme 2) ⁹.

	<u>2a</u> <u>3a</u>	2b 3b	<u>2c</u> 3c	<u>2d</u> 3d	<u>2e</u> <u>3e</u>	<u>2f</u> 3f	<u>2g</u> 3g	<u>2n</u> 3n	<u>2i</u> <u>3i</u>	<u>2j</u> <u>3j</u>
	6,36	6.46	6,47	6.47	6.42	6,39	6.67	6.69	6.65	<u>يد </u>
64-н	6.28	6,37	6.37	6.31	6.25	6.15	6.59	6,49	6.40	6.31
⁶ 5-н	7.52	7.53	7.51	7.43	b)	b)	7.65	7.61	7.59	7.46
5-H	7.17	7.17	7.10	7.29	7.40	7.39	7.27	7.44	7.43	7.43
⁶ H(R ¹)	2.18	c)	1.39	1.23	1.35	1.01	d)	d)	d)	d)
	2.13	d)	1.36	0.91	0.84	0.75	d)	d)	d)	d)
⁸ H(R ²)	7.19	7.26	7.53	d)	f)	1.40	7.31	d)	f)	0.98
H(R)	6.97	7.03	7.30	d)	g)	1.43	7.08	d)	g)	1.50

Table 2. Selected ¹H-NMR-Data of 2a - j and 3a - j^{a)}

a)250 MHz, CDCl₃. ^{b)}Signals covered. ^{c)}3.04(1H), 1.22(6H). ^{d)}Arom.H. ^{e)}2.98(1H), 1.20(6H). ^{f)}0.8(3H), 1.14-1.45(4H), 2.50(2H). ^{g)}0.96(3H), 1.36-1.64(4H), 2.86(2H). With regard to the preparative scope of the described reaction it is important to note that, according to recent results, this method proved also practicable for the synthesis of non-phenylated 2-vinylfurans ¹⁰. For instance, the main products after short-time thermolysis of the epoxyhexenynes 17a - e are the vinylfurans $18a - e^{10}$.

In summary, the thermal transformation of epoxyhexenynes (type $\underline{1}$ or $\underline{17}$) offers a new and simple approach to 2,3-disubstituted furans $\underline{11}$ which compares favorably with existing methods $\underline{2}$.

ACKNOWLEGDEMENTS

Financial support of this work by the DEUTSCHE FORSCHUNGSGEMEINSCHFT and the FONDS DER CHEMISCHEN INDUSTRIE is gratefully acknowledged.

REFERENCES

- (a) J.Roser and W.Eberbach, <u>Tetrahedron Lett</u>. <u>1984</u>, 2455. (b) J.Roser and W.
 Eberbach, 5th International Conference On Organic Synthesis, Freiburg, August 27 30, 1984, Poster M 20.
- For extensive review articles on furans, see: <u>Comprehensive Heterocyclic</u> <u>Chemistry</u>, Vol. 4, p. 89, 531, 599, 657, Pergamon Press, 1984.
- 3. F.Bourelle-Wargnier, M.Vincent and J.Chuche, Tetrahedron Lett. 1978, 283.
- G.Kryriakakou and J.Seyden-Penne, <u>Tetrahedron Lett</u>. <u>1974</u>, 1737; J.Brokatzky-Geiger and W.Eberbach, <u>Chem.Ber</u>. <u>117</u>, 2157 (1984).
- 5. The experimental details of the syntheses and the spectral data of $\underline{1a} \underline{j}$ as well as the full characterization of the 2-vinylfurans $\underline{2a} \underline{j}/\underline{3a} \underline{j}$ will be given in our forthcoming full paper.
- 6. M.Charton, J.Am.Chem.Soc. 97, 1552 (1975).

- 7. W.Eberbach and B.Burchardt, <u>Chem.Ber</u>. <u>111</u>, 3665 (1978); W.Eberbach, W.Seiler and H.Fritz, <u>Chem.Ber</u>. <u>113</u>, 875 (1980).
- 8. For other examples on the preference of 8 m over 6 m -cyclisation reactions, see: W.Eberbach and U.Trostmann, <u>Chem.Ber</u>. <u>114</u>, 2979 (1981); <u>Chem.Ber</u>. in press; D.P.Munroe and J.T.Sharp, <u>J.Chem.Soc., Perkin</u> I 1984, 849; I.R.Robert-son and J.T.Sharp, <u>J.Chem.Soc., Chem.Commun</u>. <u>1983</u>, 1003; see also ref. ¹.
- Meanwhile we obtained further evidence for intermediates like <u>14</u> by using systems designed for [1,5]- (instead of [1,3]-) H-shifts.
- 10. W.Eberbach and J.Roser, in preparation.
- 11. Results on the synthesis of higher substituted furans, including 3,4-annelated derivatives, will be published elsewhere.

Received, 8th August, 1985