STEREOSELECTIVE SYNTHESIS AND THERMAL BEHAVIOR OF (Z)-EPOXYHEXENYNES: A SIMPLE AND GENERAL ROUTE TO 2-VINYLFURANS

Wolfgang Eberbach and Joachim Roser

Institut für Organische Chemie und Biochemie der Universität Albertstrasse 21, D-7800 Freiburq, West Germany

Abstract - An efficient approach for the synthesis of $2, 3$ -disubstituted furans $(2a-j/3a-j)$ is described by using the thermally induced rearrangement of epoxyhexenynes $(1a-j)$ which are prepared by stereoselective synthesis of the (2)-pentenynals 10 and subsequent Darzens reaction.

Recently we communicated first results on the unexpected formation of 2-vinyl**la** furans by short-time thermolysis of three **1-phenylepoxyhex-(32)-ene-5-ynes** . This observation prompted us to further investigations in order to gain more insight into the mechanism of the unprecedented rearrangement and to elaborate the preparative aspects of the reaction as a possible alternative to specifically substituted furans 2 .

In this contribution we report on the straightforward synthesis of several derivatives of furan bearing bulky substituents not only at the vinyl group but also in 3-position (see structures *2* and *3).*

The epoxyhexenynes $1a-j$, comprising the essential (Z)-geometry of the central double bond, have been selected **as** appropriate starting materials. In addition to preparative reasons, the substituents R^2/R^2 were introduced to disclose steric

and/or electronic effects on the course of the rearrangement and (at least in the case of CH₃, iC₃H₇, nC_AH₀) for enabling intra- (or inter- $\frac{3}{4}$) molecular H-shifts in the potential cycloallene derivatives which have been proposed as high energy intermediates **(see** below). Furthermore, with the cyano group at the oxirane ring a significant decrease of the reaction temperature is expected providing more suitable conditions for the experimental work.

The synthesis of $1a-i$ was accomplished as outlined in Scheme 1, using the pentenynals 10 as direct precursors. While 10a was readily prepared by PDC-oxidation of commercially available 'cis-1-pentol' (8a), the other aldehydes were synthesized by sulfuric acid promoted transformation of the vinyl ethynyl carbinols *2,* the alkynylation products of the vinyl ketones 7 which themselves are accessible from 4 and *5,* respectively. Due to the directing effect of the substituents **R** ¹ the conversion of *9* to 10 took place with remarkably high stereoselectivity leading almost exclusively (> 95%) to the desired (2)-isomers. The concluding Darzens reaction to 1 resulted in the formation of the oxirane derivatives (ca. 60% yield) with the expected trans-configuration 4 of the bulky phenyl- and enynegroups. The overall-yields of $1a-j$ are between 20 and 53% (starting with $4c$, q, 6b ⁵and **a,** respectively) . Scheme 1

Compared to the previously studied 1-phenylepoxyhexenynes $1a$ the thermal reactivity of the doubly activated derivatives 1a-j is indeed much higher: thermolysis experiments, carried out in isooctane and fallowed by tlc, revealed a slow decrease of the educts already at 160 $^{\circ}$ C; after heating up to 190 $^{\circ}$ C quantitative

conversion is reached within 5- 10 min.

For preparative purposes a temperature of 170 $^{\circ}$ C is specially convenient resulting in reaction periods of 40 to 150 min. Only two products were formed in each case(73 - 92% according to 1 H-NMR analysis) which have been identified as 2vinylfurans (2/3) 5 . After work up by preparative tlc pure mixtures of the diastereomers were obtained (see Tahle 1) which could be separated in most cases either by repeated chromatography or by crystallization 5 (for some 1 H-NMR-data see Table 2).

	Table 1. Thermolysis of the Epoxyhexenynes $\underline{1a} - \underline{j}$ \underline{a}												
	<u>ıa</u>	1b	1c.	Ίq	-le	ΤI		ъn	11	11			
t [min] ^{b)}	40	-50	60	60			60	-60	-90	-90			
C)	-88		75.	87	-83	85	-91	92	73.	-78			
$(\underline{2} + \underline{3})$ [%] d)		63		68		72.	79	-89	68	77			
ratio $2:3$		90/10 89/11 92/8		56/44 38/62 6/94 89/11 53/47 44/56 7/93									

Table 1. Thermolysis of the Epoxyhexenynes $1a - j$ ^{a)}

a) $2 \cdot 10^{-2}$ m in isooctane, 170 °C. ^{b)} Time for complete conversion. ^{c)} Crude products $({}^{1}$ H-NMR). ^{d)} After tlc.

Whereas the reaction rate of the transformations varies only slightly in this series, there is a significant influence of the substituents on the stereochemical outcome (Table 1). Especially R^2 exerts a marked effect on the ratio of the isomers $2/3$: with $R^2 = H$ (a, b, c, g) formation of the vinylfurans 2 predominates by a factor of about 9, with $R^2 = Ph$ $(\underline{d}, \underline{h})$ or nC_AH_{q} $(\underline{e}, \underline{i})$ the yields of both isomers are nearly the same, and with $R^2 = tC_AH_G$ (f, j) the furans 3 are by far the major products (ca. 14 **:I).**

This observation is in agreement with a reaction mechanism involving heterocycloallenes (14) as central intermediates ¹ (see Scheme 2). One possible route to - 2 /j implies the formation of the diradicals *2* which could proceed to either diastereomer, depending on the geometry of the allylic unit. It is reasonable to assume that with increasing size of the substituents R^2 the geometry of (E) -16 is favored over (2)-16; consequently, the activation energy for the recyclisation affording isomer 2 should be lowered. Although this explanation is supported by a fairly good correlation between the ratio of *2/3* and the space-filling parameters for R^2 ⁶ the cyclopropene-carbene pathway ¹ cannot be unambigously excluded as a mechanistic alternative.

Scheme 2

Two comments have to be made concerning the formation and the reactivity of the cycloallenes *2:* (1) The electrocyclisation of the conjugated dipoles proceeds with complete periselectivity (8 "-reaction); there is no indication for the 6 **n**process leading to 2,3-dihydrofurans $12^{7,8}$. (2) The possible H-shifts in $14a$, <u>b</u>, *e,* **i** producing the more stable seven-membered derivatives 13/15 do not compete with the "normal" reaction sequence (to 2 and 3, see Scheme 2) ⁹.

Table 2. Selected 1 H-NMR-Data of 2a - j and 3a - j a)													
	$\overline{2a}$	$\overline{2p}$	$rac{2}{2}$	$\overline{54}$	$\frac{2e}{2}$	2f	$\frac{2q}{2}$	2n	$\overline{21}$	21			
	$\frac{3a}{2}$	$\stackrel{\text{3b}}{=}$	$rac{3c}{2}$	$\overline{3d}$	$\overline{3e}$	$\overline{\mathbf{3f}}$	<u>3g</u>	$\frac{3h}{h}$	<u> 31</u>	<u>그</u>			
6 4-H	6.36	6.46	6.47	6,47	6.42	6,39	6.67	6.69	6.65	6.66			
	6.28	6.37	6.37	6, 31	6.25	6.15	6.59	6.49	6,40	6.31			
6 _{5-H}	7.52	7.53	7.51	7.43	b)	b)	7.65	7.61	7.59	7.46			
	7.17	7.17	7.10	7.29	7.40	7.39	7.27	7.44	7.43	7.43			
$\delta_{H(R}1)$	2.18	\in)	1.39	1,23	1.35	1.01	d)	d)	d)	d)			
	2.13	d)	1.36	0.91	0.84	0.75	d	d	d)	d)			
6 H(R ²)	7.19	7.26	7.53	d)	f)	1.40	7.31	d)	f)	0.98			
	6.97	7.03	7.30	d)	g)	1.43	7.08	d)	g)	1.50			

a) 250 MHz, CDC1₃. ^{b)} Signals covered. ^C)_{3.04}(1H), 1.22(6H). ^{d)}Arom.H. ^{e)}2.98(1H), 1.20(6H). f)_{0.8(3H}), 1.14-1.45(4H), 2.50(2H). $9)$ _{0.96(3H)}, 1.36-1.64(4H), 2.86(2H).

With regard to the preparative scope of the described reaction it is important to note that, according to recent results, this method proved also practicable for the synthesis of non-phenylated 2-vinylfurans ¹⁰. For instance, the main products
after short-time thermolysis of the epoxyhexenynes <u>17a</u>-e are the vinylfurans
 $\frac{18a}{e^2}$ -e¹⁰. after short-time thermolysis of the epoxyhexenynes 17a - e are the vinylfurans $18a - e^{-10}$.

In summary, the thermal transformation of epoxyhexenynes (type 1 or 17) offers a new and simple approach to 2,3-disubstituted furans 11 which compares favorably with existing methods 2 .

ACKNOWLEGDEMENTS

Financial support of this work by the DEUTSCHE FORSCHUNGSGEMEINSCHFT and the FONDS DER CHEMISCHEN INDUSTRIE is gratefully acknowledged.

REFERENCES

- 1. (a) J.Roser and W.Eberbach, Tetrahedron Lett. 1984, 2455. *(b) J.Roser and W.* Eberbach, 5th International Conference On Organic Synthesis, Freiburg, August 27-30, 1984, Poster M 20.
- 2. For extensive review articles on furans, see: Comprehensive Heterocyclic Chemistry, Vol. 4, p. 89, 531, 599, 657, Pergamon Press, 1984.
- 3. F.Bourelle-Wargnier, M.Vincent and J.Chuche, Tetrahedron Lett. 1978, 283.
- 4. G.Kryriakakou and J.Seyden-Penne, Tetrahedron Lett. 1974, 1737; J.Brokatzky-Geiger and W.Eberbach, Chem.Ber. 117, 2157 (1984).
- 5. The experimental details of the syntheses and the spectral data of $1a-j$ as well as the full characterization of the 2-vinylfurans $2a-j/3a-j$ will be given in our forthcoming full paper.
- given in our forthcoming full paper.
6. M.Charton, <u>J.Am.Chem.Soc</u>. <u>97,</u> 1552 (1975).
- 7. W.Eberbach and B.Burchardt, Chem.Ber. 111, 3665 (1978); W.Eberbach, W.Seiler and H.Fritz, Chem.Ber.113, 875 (1980).
- 8. For other examples on the preference of 8π over 6π -cyclisation reactions, see: W.Eberbach and U.Trostmann, Chem.Ber. 114, 2979 (1981); Chem.Ber. in press; D.P.Munroe and J.T.Sharp, J.Chem.Soc., Perkin I 1984, 849; I.R.Robertson and J.T.Sharp, <u>J.Chem.Soc.,Chem.Commun</u>. 1983, 1003; see also ref. ¹.
- 9. Meanwhile we obtained further evidence for intermediates like *2* by using systems designed for [1,5]- (instead of [1,3]-) H-shifts.
- 10. W.Eberbach and J.Roser, in preparation.
- 11. Results on the synthesis of higher substituted **furans,** including 3.4-annelated derivatives,will be published elsewhere.

Received, 8th August, 1985