SYNTHESIS OF VINCA ALKALOIDS AND RELATED COMPOUNDS. XXVI¹. AN UNUSUAL SIDE-CHAIN ELIMINATION FROM INDOLE NUCLEUS

Mária Incze, Ferenc Sóti, Zsuzsanna Kardos-Balogh, and Csaba Szántay^{*}

Central Research Institute for Chemistry of the Hungarian Academy of Sciences, H~1025, Budapest, Pusztaszeri ut 59-67, Hungary

<u>Abstract</u> - Investigating the Bofmann reaction of quaternary salt <u>2</u> an unusual side-chain elimination from position 3 of the indole nucleus has been observed.

With the purpose of SAR studies on alkaloid-like compounds the synthesis of 3-substituted indole derivatives (3-7), containing the indicated azabicyclo[3.3.1]nonane molety at position 2 of the indole nucleus, has been intended. To reach this goal Hofmann elimination of quaternary salt 2 induced by appropriate nucleophile seemed to be an attractive approach. Thougn <u>Atta-Ur-Rahman</u>² reported exclusive C_{12b} -N cleavage in the degradation of a similar quaternary β -carboline derivative, <u>Kutney</u>³, in the same type reaction, isolated two cyano-substituted derivatives; the main product (28 %) arose by C_6 -N bond opening, the other one (14 %) by C_{12b} -N fission. The quaternary salt 2 has been prepared in 71 % yield⁵ from the optically active

The quaternary saft 2 has been prepared in /1 % yield from the optically active [l(S), l2b(S)] alcohol l^4 by mesulation.

By reacting 2 with NaCN in ethylene glycol at 200 $^{\circ}$ C the cyano derivatives 3 and 4 have been obtained in 68 % combined yield. The epimers have been separated by column chromatography on silica gel (Kieselgel 60, 0.063-0.2 mm, Merck; elution with ethyl acetate - diethylamine 10:1). Compound 3 (epimer A) has been obtained as a yellow oil in 42 % yield⁶.

Cyanide 4 (epimer B) has been isolated as colourless crystals in 26 % yield⁷. On the other hand, when 2 was reacted with NaOH in the same conditions, to our surprise, compound 8 was isolated in good yield (80 %)⁸.

By column chromatography (Kieselgel 60, 0.063-0.2 mm, Merck; elution with toluenediethylamine 10:1) of the mother liquor small amounts of 3'-ethyl ($\underline{5}$, brownish oil, yield 3 %)⁹ and 3'-vinyl ($\underline{6}$, dark oil, yield < 1 %)¹⁰ derivatives could also be isolated.

Concerning the mechanism of transformation $2 \longrightarrow 8$, similarly to the formation of 3 and 4, addition of hydroxide anion to vinyl derivative 6 followed by retrohydroxyalkylation process or oxydation to 3'-acetyl derivative and its acyl fission was originally assumed. Since the 3'-hydroxyalkyl derivative 7 could not even be detected in the reaction mixture, this supposition requires further investigation and confirmation.

ACKNOWLEDGEMENTS

The authors wish to thank J. Tamás for mass spectra, G. Keresztury for IR spectra, M. Kajtár-Peredy for NMR spectra, the Hungarian Academy of Sciences and the Richter Gedeon Pharmaceutical Company (Budapest) for financial support.

REFERENCES AND NOTES

- For part XXV. see Gy. Kalaus, M. Kiss, M. Kajtár-Peredy, J. Brlik, L. Szabó, and Cs. Szántay, the preceding paper.
- Atta-Ur-Rahman, J. A. Beisler, and J. Harley-Mason, <u>Tetrahedron</u>, <u>36</u>, 1063 (1980).
- 3. J. P. Kutney, Ka Kong Chan, A. Failli, J. M. Fromson, C. Gletsos, A. Leutwiler, V. R. Nelson, and J. P. de Souza, <u>Helv. Chim. Acta</u>, <u>58</u>, 1648 (1975).
- J. Laronze, J. Y. Laronze, J. Lévy, and J. Le Men, <u>Bull. Soc. Chim. France</u>, 1195 (1977).
- 5. Compound 2: mp 330 °C (decomp.); $[\alpha]_D^{20}$ +13.4° (c= 1.0; H₂O); IR (KBr): 3280 cm⁻¹ (indole NH, bonded), 1215, 1176, 1043, 553 and 526 cm⁻¹ (SO₃); ¹H-NMR (DMSO-d₆+CDCl₃, 3:1): δ (ppm) 1.10 (3H, t, J=7.5 Hz, CH₂-CH₃), 2.48 (3H, s, CH₃SO₃^{*}), 4.94 (1H, broad s, C_{12b}-H), 6.95-7.65 (4H, m, aromatic), 9.94 (1H, broad s, indole NH); ¹³C-NMR (DMSO-d₆+CDCl₃, 3:1): δ (ppm)¹¹ 7.3 (CH₂-CH₃), 17.3 (C₇), 20.3^X (C₁₄), 20.5^X (C₃), 28.4⁺ (C₁₅), 32.1⁺ (CH₂-CH₃), 33.2⁺ (C₂), 36.4 (C₁), 39.4 (CH₃SO₃⁻), 51.2 (C₁₃), 63.1 (C₆), 64.7 (C₄), 69.1 (C_{12b}), 107.4 (C_{7a}), 112.7 (C₁₁), 117.9 (C₈), 119.7 (C₉), 122.6 (C₁₀), 125.4^{*} (C_{12a}), 125.9^{*} (C_{7b}), 137.4 (C_{11a}); Calc. for C₂₁H₃₀N₂O₃S (390.54): C, 64.58; H, 7.74; N, 7.17; S, 8.21. Found: C, 64.65; H, 7.69; N, 7.18; S, 8.20.
- 6. Compound $3:[\alpha]_{D}^{20}$ +78° (c=1.0; CHCl₃); MS m/e (%): 321 (M⁺, 35), 320 (4), 392 (100), 209 (18), 183 (11), 155 (11), 96 (14); IR (KBr): 3403 cm⁻¹ (indole NH, bonded; 3490 cm⁻¹ in CHCl₃), 2236 cm⁻¹ (CN); H-NMR (CDCl₃): 6 (ppm) 0.74 (3H, t, J=7.2 Hz, CH₂-CH₃), 1.1-1.3 (2H, m, CH₂-CH₃), 1.69 (3H, d, J=7.4 Hz, C_β-H₃), 4.10 (1H, s, C₉-H), 4.35 (1H, q, C_α-H), 7.0-7.8 (4H, m, aromatic), 8.25 (1H, broad s, indole NH); ¹³C-NMR (CDCl₃): 6 (ppm)¹¹ 6.6 (CH₂-CH₃), 20.4 (C_β), 22.1^x (C₇), 22.2 (C_α), 24.0^x (C₃), 31.2 (C₅), 31.3 (C₆), 34.5 (CH₂-CH₃), 37.8 (C₄), 46.1 (C₂), 55.0 (C₈), 60.4 (C₉), 109.6

 $(C_{3},), 111.3 (C_{7},), 118.1 (C_{4},), 119.8^{+} (C_{5},), 121.9^{+} (C_{6},), 122.2 (CN), \\ 125.4 (C_{3a},), 135.0 (C_{2},), 135.2 (C_{7a},); Calc. for <math>C_{21}H_{27}N_{3}$ (321.45): C, 78.46; H, 8.47; N, 13.07. Found: C, 78.52; H, 8.47; N, 13.09. 7. Compound <u>4</u>: mp 92-94 $^{\circ}C_{5}[\alpha]_{D}^{20}$ +4.5 $^{\circ}$ (c=1.0; DMF); MS m/e (%): 321 (M⁺, 32),

- 320 (4), 292 (100), 209 (20), 183 (12), 155 (13), 96 (18); IR (KBr): 3405 and 3320 cm⁻¹ (indole NH, different bonded forms; 3495 cm⁻¹ in CHCl₃), 2236 cm⁻¹ (CN); ¹H-NMR (CDCl₃): δ (ppm) 0.75 (3H, t, J=7 Hz, CH₂-CH₃), 1.20 (2H, m, CH₂-CH₃), 1.70 (3H, d, J=7.4 Hz, C_β-H₃), 3.98 (1H, s, C₉-H), 4.25 (1H, q, C_α-H), 7.0-7.9 (4H, m, aromatic), 8.24 (1H, broad s, indole NH); ¹³C-NMR (CDCl₃): δ (ppm)¹¹ 6.7 (CH₂-CH₃), 20.1 (C_β), 22.1^x (C₇), 22.4 (C_α), 24.0^x (C₃), 31.2 (C₅), 31.6 (C₆), 34.6 (CH₂-CH₃), 37.6 (C₄), 46.2 (C₂), 55.1 (C₈), 60.4 (C₉), 109.9 (C₃), 111.3 (C₇), 118.7 (C₄), 119.9⁺ (C₅), 122.0⁺ (C₆), 122.2 (CN), 125.2 (C_{3a}), 134.9 (C₂), 135.2 (C_{7a}); Calc. for C₂₁H₂₇N₃ (321.45): C, 78.46; H, 8.47; N, 13.07. Found: C, 78.49; H, 8.46; N, 13.10.
- 8. Compound <u>8</u>: mp 65-67 ${}^{\circ}C_{; [\alpha]}{}_{D}^{20}$ +79.2 ${}^{\circ}$ (c=1.0; CHCl₃); MS m/e (%): 268 (M⁺, 44), 267 (7), 239 (100), 156 (52), 143 (19), 130 (31), 96 (17); IR (CHCl₃): 3450, 3435, 3430 and 3400 cm⁻¹ (indole NH, different bonded forms), 1295 cm⁻¹ (CN); ¹H-NMR (CDCl₃): 6 (ppm) 0.84 (3H, t, J=7.5 Hz, CH₂-CH₃), 3.88 (1H, broad s, C₉-H), 6.53 (1H, s, C₃,-H), 6.9-7.6 (4H, m, aromatic), 8.93 (1H, broad s, indole NH); ¹³C-NMR (CDCl₃): 6 (ppm)¹¹ 6.9 (CH₂-CH₃), 23.1^X (C₇), 24.2^X (C₃), 31.3 (C₆), 31.5 (C₅), 34.4 (CH₂-CH₃), 36.4 (C₄), 46.0 (C₂), 54.8 (C₈), 62.5 (C₉), 101.7 (C₃,), 110.6 (C₇), 119.1⁺ (C₆), 119.9⁺ (C₄), 121.2 (C₅), 128.6 (C_{3A},), 135.1 (C₂), 137.1 (C_{7a}); Calc. for C₁₈H₂₄N₂ (268.39): C, 80.55; H, 9.01; N, 10.44. Found: C, 80.54; H, 9.05; N, 10.45.
- 9. Compound 5: ¹H-NMR (CDCl₃): 6 (ppm) 0.68 (3H, t, J=7 Hz, C₅-CH₂-CH₃), 1.04 (2H, m, C₅-CH₂-CH₃), 1.27 (3H, t, J=7.5 Hz, C_β-H₃), 1.4-2.4 (8H, m, C₃-H₂+ C_4 -H₂+C₆-H₂+C₇-H₂), 2.80 (2H, q, C_α-H₂), 2.55-3.50 (4H, m, C₂-H₂+C₈-H₂), 4.01 (1H, broad s, C₉-H), 6.95-7.7 (4H, m, aromatic), 8.0 (1H, broad s, indole NH); ¹³C-NMR (CDCl₃): 6 (ppm)¹¹ 6.5 (C₅-CH₂-CH₃), 15.7 (C_β), 17.8 (C_α), 22.0[×] (C₇), 24.2[×] (C₃), 31.2 (C₅), 31.3 (C₆), 34.5 (C₅-CH₂-CH₃), 37.6 (C₄), 46.5 (C₂), 55.9 (C₈), 60.4 (C₉), 110.5 (C₇), 117.5 (C₃), 118.8⁺ (C₄), 118.9⁺ (C₅), 121.4⁺ (C₆), 127.6 (C_{3a}), 133.5 (C₂), 135.3 (C_{7a}).
- 10. Compound <u>6</u>: ¹H-NMR (CDCl₃): δ (ppm) 4.13 (lH, broad s, C₉-H), 5.31 (lH, dd, J_{gem} : 2.2 Hz, J_{cis} : 11.6 Hz, C_{β} -H_A), 5.68 (lH, dd, J_{trans} : 17.8 Hz, C_{β} -H_B). 11. The chemical shift values signed with identical symbols are interchangeable.

Received, 12th July, 1985