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Abstract -— Reduction of ureas (4 and 9a) with diisobutylaluminum hydride,
foltowed by cyclization with formic acid gave the corresponding 1- and 7-
substituted pyrimido[6,1-a]isoquinolines (5 and 10a}, respectively, with
diastereoselectivity. In a similar fashion, 7-aryl-1-methyl analogues

(10b,c} were obtained from ureas {9b,c) accompanied by the formation of

uncyclized formates {1la,b), respectively.

n Cyclization of several kinds of N-acyliminium ions have been used for a synthesis of wide

variety of heterocyclic systems]. From Pioneering work of Speckamp]a'c, and the studies of

others]d_i

, such cyclizations have been found to achieve remarkable stereccontrol in a asymmetric
synthesis, N-Acyliminium ion cyclizations onte arematic ring have been used for a synthesis of
heterocyclic fused tetrahydraisoguinolines (2} from 1. Previously we reported a diastereoselect-
jve synthesis of 1- and 6—ary1[4,3-g]150qu1no1ine52 by this method. In continuation of our pre-
vious studies in connection with our interest in 4-aryl-1,2,3,4-tetrahydrecisoquinolines because
of their potentially biological activities3, we investigated a synthesis of 7-arylpyrimidol6,1-
aliscquinolines according to the method previously reportedq. Heterocycles fused with pyrimidine
are of interest from pharmacological point of view5 and many of their derivatives are useful

drugs. 1-Substituted pyrimido[6,1-a]isoquincline was also prepared to examing whether cyclization

proceeds with stereoselectivity. The results of our studies are described in this paper.
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At first, we described a synthesis of T-methyl-1,11b-trans-pyrimido[6,1-alisoquinoline (5). The
urea {4), the precursor of the N-acyliminium ion which undergoes cyclization to 5, is easily
obtained from 3,4-dimethoxyphenyipropionic acid (3} via conversion to acid azide followed by
reaction with ethyl g-benzyTamino-a-methylpropionate. Reduction of 4 with diisobutylaluminum
hydride in toluyene at -78°C, followed by cyctization with formic acid yielded 5 as a single
diastereomer without formation of the alternative stereoisomer. In this reaction, arylation pro-
ceeds from the opposite side of methyl group, as in the formation of 1-methyloxazolo[4,3-aliso-
quinoline (§)2a, to take the transition state (7a) which should be more favorable than the

alternative one (7b).
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In the same manner, the urea (9a), obtained from the acid (§g)2c, was converted to the desired

7-phenylpyrimidoisoquinoline (10a) with high diastereoselectivity without foymation of the alter-
native isomer. In the ]H NMR {CDCI3) spectrum, the characteristic signals were observed at §
2.97 {d,d, J=10.5 and 13.5 Hz, ax. 6-H), 4.22 (d,d, J=5 and 10 Hz, 11b-H) and 4.89 (d,d, J=5 and
13.5 Hz, eq. 6-H). The vicinal coupling constant for g6’7 indicates that the relative configu-
ration of 7-H and 11b-H is trans from the consideration of the Dreiding molecular model and the

Karplus re1ation6.
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In the next stage, we examined the same reaction by using ureas {9b,c) derived from 8a and 8b.
Reduction of 9b,c with diiscbutylaluminum hydride, followed by cyclization with formic acid at
room temperature yielded the corresponding 7-aryl-1-methylpyrimidoisoquinolines {10b,c), respect-
ively, as a single diastereomer, accompanied by the formation of uncyclized formates (1la,b)
Treatment of 11a,b with formic acid at higher temperature (60°C) resulted in a recovery of 1la,b
and the formation of 10b,c was not observed. The minimum steric 1,3-interaction between 11a-H and
phenyl group {or 11a-H and methyl group) in the transition state (12) can accounted for a dia-

stereoselective synthesis of these cyclization products. Only 7,11a-trans-11a,1-trans-inter-

mediate (12a) in the transition state yields the cyclization products and another intermediate

(12b) gave rise to a formation of uncyclized formate (11).
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EXPERIMENTAL
Melting points are not corrected. ]H NMR spectra were taken on a Varian EM 390 instrument. Mass
spectra were taken at an ionizing veltage of 70 eV on a Hitachi RMU-7L instrument.

General Procedure for a synthesis of Ureas (4 and 9) To a stirred mixture of carboxylic acid

(3 or 8: 30 mmol) and Et N (5.05 g, 50 mmol) in acetone (40 m1) was added CICOOEt (3.27 g, 30
mmol)} under ice-cooling. After the stirring had been continued for 0.5 h at the same temperature,
a solution of NaN3 {3.25 g, 50 mmel1} in HZO (4 m1) was added. After 1 h, the mixture was diluted
with HZO and extracted with toluene. The extract was dried (Na2504 and evaporated to 50 ml and
heated in the presence of ethyl a-methyl-g-benzylaminopropionate (7.29 g, 33 mmol)(for prepara-
tion of 9a, 6.83 g, 33 mmol of ethyl g-benzylaminopropionate was used) under reflux for 14 h.

The solvent was evaporated and the remaining residue was chromatographed on silica gel (30 g).
Elution with benzene gave the corresponding urea.

4: This compound was obtained in 76 % yield, mp 108-110°C, ]H NMR (CDC}a) § 1.09 {3H, t, J=7 Hz),
1.22 (3H, t, J=7.5 Hz), 2.66-2.80 (2H, m), 3.06-3.68 (5H, m), 3.83 {6H, s), 4.10 (2H, q, J=7.5
Hz), 4.33 (1H, d, J=13 Hz), 4.57 (W4, d, J=13 Hz), 6.76 (3H, s}, 7.13-7.32 (5H, m). Anal. Calcd
for 024H32N205: C, 67.27; H, 7.53; N, 6.54. Found: C, 67.37; H, 7.53; N, 6.61.

9a: This compound was obtained as an oil in 67 % yield, ]H NMR (CDC13} § 1.21 (3H, t, J=7.5 Hz),
2.38-2.50 (2H, m), 3.41-3.57 (2H, m), 3;77-3.97 {24, m), 3.82 (3H,'s), 3.8 {3H, s}, 4.09 (2H, q,
J=7.5 Hz), 4.39 (24, s), 6.80 (3H, s), 7.06-7.33 (10H, m). Signals due to NHCH,CHAr, are con-
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cealed beneath CH30 signals at & around 3.8.

9b: This compound was obtained as an oil in 65 % yield, 1

H NMR (CDC13) § 1.02 (3H, d, J=7 Hz),
1.18 (3H, t, J=7.5 Hz), 2.51-2.83 {14, m), 3.23-3.48 (2H, m), 3.74 {3H, s), 3.78 {3H, s), 4.01
(2K, q, d=7.5 Hz), 4.23 (1H, d, J=13 Hz), 4.50 (iH, d, J=13 Hz), 6.78 {3H, broad 5), 7.21-7.23
{TOH, m). Signals due to HNCH,CHAr are concealed beneath CH,0 signals at ¢ around 3.8.

General Procedure for a Synthesis of Pyrimido[6,1-a]isoquinolines {5) and (10) To a stirred

solution of 4 (or 9) (10 mmo1) in toluene (50 m1) was added diisobutyTaluminum hydride {17 mmol,
17 m1 of 1M hexane solution) at -78°C. After the stirring had been continued at the same temper-
ature for 40 min, the mixture was decomposed with 5 % HZSO4 (50 m1) and extracted with CHC13. The
extract was dried (Na2304) and evaporated, A mixture of the remaining residue and formic acid

{15 m1} was stirred at room temperature for 14 h. The mixture was made basic with 28 % ammonia
and extracted with CHC13. The extract was washed with HZO’ dried (NaZSOQ) and evaporated. The
remaining residue was chromatographed on silica gel {25 g}.

5: This compound was obtained by elution with CHC]3 as an oil in 53 % yield, m/e 366 (M+), 1

H
NMR (CDC13) § 1.08 (3H, d, J=7 Kz), 2.02-2.36 (1H, m), 2.53-3.58 (5H, m), 3.99-4.30 {IH, m),
4.42-4.70 {3H, m, NCﬂ206H5 and 11b-H), 6.70 (1M, s}, 6.71 (W, s), 7.10-7.33 (5H, m),

16a: This compound was obtained by elution with CHCI !

as an oil in 48 % yield, m/e 428 (M*), 'H

3
NMR (CDC13) & 1.88-2.23 (14, m), 2.39-2.60 (1K, m}, 2.97 {1H, d,d, J=10.5 and 13.5 Hz), 3.19-
3.48 (2H, m), 3.63 (3H, s), 3.89 (3H, s), 4.22 {WH, d,d, d=5 and 12 Hz), 4.62 (IH, d, J=15 Hz),
4.73 (H, d, J=15 Hz)}, 4.89 (1H, d.d, J=5 and 13.5 Hz), 6.40 (IH, s), 6.72 {1H, s}, 7.22-7.50
(10H, m). Signal due to 7-H is concealed beneath Cﬁaﬂ signal.

10b and 1la: Elution with AcOEt-hexane (1:2, v/v) gave 1la as an oil in 34 % yield, m/e 442 (M+-
46), ]H NMR (CDC13) § 0.89 (3H, d, J=7 Hz}, 1.98-2.27 (14, m), 2.85-3.45 (2H, m}, 3.80 (3H, s},
3.87 (3H, s), 3.74-3.86 (2H, m), 4.03-4.11 {1H, m), 4.33 (2H, broad s), 4.58-4.84 (TH, m), 6.75
-6.78 (34, m), 7.00-7.42 (1GH, m), 8.04 (IH, s). Successive elution with CHC]3 gave 10b as an

oil in 28 % yield, m/e 442 (M+), ]H NMR (CDCT1.) & 1.23 {3H, d, J=7 Hz), 2.33-2.60 (1H, m),

3
2.77-3.29 (24, m), 2.98 {14, d,d, J=1 and 10.5 Hz, ax. 6-H), 3.61 (3H, s}, 3.86 (3H, 3}, 4.37
{WH, d, J=15 Hz}, 4,77 (IH, d, J=15 Hz), 4.81 (1IH, d,d, J=5 and 13.5 Hz, eq. 6-H), 6.40 (1H, s),
6.77 (IH, s}, 7.00 (10H, broad s). Signal due to 7-H and 11b-H are concealed beneath other
signals,

10c and 11b: Elution with AcOEt-hexane (1:2, v/v) gave 11b as an oil in 30 % yield, m/e 502
(M*-46), TH NMR (COC1;) 6 0.89 (3H, d, J=7 Hz), 2.06-2:26 (1H, m), 2.86-3.30 (2H, m), 3.66-3.86

(24, m), 3.81 {6H, s), 3.8 (6H, s), 3.97-4.09 (1H, m}, 4.33 (24, broad s), 4.59-4.82 (1H, m),

—2910—




HETERQCYCLES, Vol 23, Ne 11, 1985

6.76-6.83 (6H, m), 6.99-7.36 (5H, m), 8.07 (TH, s). Successive elution with CHC13 yielded 10c

as an 0il in 25 % yield, m/e 502 (m*y, !

H NMR (CDC13) 6 1,22 {3H, d, J=7 Hz), 2.17-2.63 (1H, m),
2.78-3.30 (2H, m), 2.98 (iH, d.d, J=10.5 and 13.5 Hz, ax. 6-H), 3.67 (3H, s), 3.86 {3H, s), 3.89
(3, s}, 4.39 (1H, d, J=15 Hz), 4.78 (1H, d,d, J=5 and 13.5 Hz, eq. 6-H), 4.80 (M, d, J=15 Hz),
6.46 (1H, s), 6.83 (14, s), 6.71-6.80 (3H, m), 7.34 (5H, broad s). Signals due to 7-H and 11b-H

are concealed beneath other signals.
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