SYNTHESIS OF (\pm) -LUPININE AND (\pm) -EPI-LUPININE USING REGIOSELECTIVE ALKYLATION OF FUNCTIONALIZED 3-SULFOLENE

Takashi Nomoto and Hiroaki Takayama*

Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko,

Kanagawa 199-01, Japan

Abstract—The regionselective alkylation of 3-(N,N-dimethyl-aminomethyl)-3-sulfolene was applied to the synthesis of quinolizatione alkaloids, (\pm) -lupinine and (\pm) -epi-lupinine.

We have developed the stereoselective synthesis of conjugated dienes 1a using direct alkylation of 3-sulfolenes 1b , c as a key step, and found that substituent effect at the 3-position of 3-sulfolene greatly influences the regional electivity of the alkylation. 2 In this paper, we wish to describe application of the regional elective alkylation of functionalized 3-sulfolene to the synthesis of quinolizidine alkaloids, (\pm) -lupinine (1) and (\pm) -epi-lupinine (2).

Retrosynthetic analysis of quinolizidine ring system (3) starting from 3-sulfolene (6) was shown in scheme 1. The quinolizidine (3) can be constructed by intramolecular imino Diels-Alder reaction³ of 4, and it is obtained by manipulation of the side chain of 5 which would be prepared using regionselective alkylation of functionalized 3-sulfolene (6). In this case, 3-(N,N-dimethylaminomethyl)-3-sulfolene (7), which was readily prepared from 3-bromomethyl-3-sulfolene ⁴ and dimethylamine, was chosen⁵ as the synthetic equivalent of 3-formyl-3-sulfolene which would be available for the synthesis of many natural products.

To a solution of 3-(N,N-dimethylaminomethyl)-3-sulfolene (7) (1.5 equiv.), ester iodide (8) (1 equiv.), and HMPA (4 equiv.) in THF was added a solution of LiHMDS (1.1 equiv.) in THF in one portion at -78° C. After general work up and chromato-

Scheme 2.

graphic purification, the desired ester $(9)^6$ was obtained as a main product in 33% vield accompanied by 10^6 (6%) and the dialkylated compound (11) 6 (5%). The regiochemistry of $oldsymbol{9}$ was confirmed by converting it to the corresponding diene $oldsymbol{(12)}^6$ by thermal desulfonylation. Treatment of the ester (9) with TFA in CH_2Cl_2 at room temperature afforded the corresponding carboxylic acid (13), which without isolation was converted to the amide $(14)^6$ in 70% yield (ClCO₂Et, Et₂N in CH₂Cl₂ then conc. NH $_{\lambda}$ OH $)^{7}$. The amide (14) was treated with paraformaldehyde (1.1 equiv.) and cesium carbonate in THF, and the crude product was acetylated with acetic anhydride/pyridine to yield the acetate $(15)^8$ (77%) and N,N-diacetoxymethylated compound (16) (13%). Thermolysis of 15 in toluene containing NaHCO₃ (5 equiv.) in a sealed tube at 200°C for 2 h gave the lactam (18) [m/e 208 (M^+); IR (neat) 1630 cm^{-1}] in 80% yield via desulfonylation and subsequent intramolecular Diels-Alder reaction of 17. The lactam (18) was treated with MCPBA (1.1 equiv.) in CH_2Cl_2 followed by treatment with acid anhydride (Ac₂O or TFAA) to yield the aldehyde (19) [m/e 179 (M⁺); 1 H NMR (CDC1₃) δ 1.04-2.10 (9H, m), 4.36, 4.98, and 7.02 (each 1H, m), 9.45 (1H, s); IR (KBr) 1680, 1625 cm^{-1}] in 65% yield. Catalytic hydrogenation of 19 gave 20a, b and subsequent lithium aluminum hydride reduction provided (±)-lupinine (1) [m/e 169 (M⁺); 1 H NMR (CDCl₃) δ 1.20-2.40 (15H, m), 2.70-2.95 (2H, m), 3.71 (1H, d, J=11.0 Hz), 4.18 (1H, dd, J=11.0, 5.0 Hz)] and (±)-epilupinine (2) $[m/e \ 169 \ (M^+); \ ^1H \ NMR \ (CDCl_3) \delta 1.10-2.30 \ (15H, m), \ 2.65-2.95 \ (2H, m),$ 3.35-3.80 (2H, m)] in 28% and 50% yield from 19, respectively. The spectroscopic properties of f 1 and f 2 thus obtained were identical with those reported. 9

REFERENCES AND NOTES

- a) S. Yamada, H. Ohsawa, T. Suzuki, and H. Takayama, <u>Chem. Lett.</u>, 1983, 1003;
 b) S. Yamada, T. Suzuki, and H. Takayama, <u>Tetrahedron Lett.</u>, 1981, 22, 3085;
 c) S. Yamada, T. Suzuki, H. Takayama, K. Miyamoto, I. Matsunaga, and Y. Nawata, <u>J. Org. Chem.</u>, 1983, 48, 3483.
- 2. a) Preliminary results were presented at The 105th Annual Meeting of Pharmaceutical Society of Japan, Kanazawa, April 1985, Abstracts p 662 and details on these will be reported in the near future; b) S. Yamada, H. Naito, T. Nomoto, and H. Takayama, <u>Chem. Pharm. Bull.</u>, submitted; c) Recently other group reported independently regionselective alkylation of 3-

methy1-3-sulfolene using our method: T. S. Chou, H. H. Tso, and L. J. Chang,

J. Chem. Soc., Chem. Commun., 1984, 1323.

- 3. S. M. Weinreb, Acc. Chem. Res., 1985, 18, 16 and references cited therein.
- 4. R. C. Krug and T. F. Yen, <u>J. Org. Chem.</u>, 1956, 21, 1082.
- 5. It can be assumed that alkylation of 7 occurs at 2-position, ^{2a} and when 3-bromomethyl-3-sulfolene was subjected to alkylation reaction, elimination of hydrogen bromide occurred immediately.
- 6. 9: ¹H NMR (CDC1₃) δ 1.46 (9H, s), 1.70-2.00 (4H, m), 2.19 (6H, s), 2.20-2.48 (2H, m), 2.76 (1H, d, J=14 Hz), 3.20 (1H, d, J=14 Hz), 3.74 (3H, m), 5.90 (1H, m); 10: ¹H NMR (CDC1₃) δ 1.46 (9H, s), 1.65-2.10 (4H, m), 2.20 (6H, s), 2.15-2.45 (2H, m), 2.98 (2H, s), 3.76 (3H, s), 5.88 (1H, m); 11: ¹H NMR (CDC1₃) δ 1.46 (18H, s), 1.70-2.00 (8H, m), 2.19 (6H, s), 2.20-2.40 (4H, m), 2.73 (1H, d, J=14 Hz), 3.17 (1H, d, J=14 Hz), 3.68 (2H, m), 5.84 (1H, m); 12: ¹H NMR (CDC1₃) δ 1.45 (9H, s), 1.60-1.90 (2H, m), 2.20 (6H, s), 2.10-2.40 (4H, m), 3.04 (2H, s), 5.03 (1H, dd, J=11.0, 1.5 Hz), 5.36 (1H, dd, J=17.5, 1.5 Hz), 5.66 (1H, t, J=7.5 Hz), 6.32 (1H, dd, J=17.5, 11.0 Hz); 14: ¹H NMR (CDC1₃) δ 1.75 2.05 (4H, m), 2.20 (6H, s), 2.34 (2H, t, J=6 Hz), 2.77 (1H, d, J=14 Hz), 3.20 (1H, d, J=14 Hz), 3.76 (3H, m), 5.50-5.80 (2H, br. s), 5.91 (1H, m); IR (neat) 3600-3100, 1665 cm⁻¹.
- 7. M. L. Bremmer, N. A. Khatri, and S. M. Weinreb, <u>J. Org. Chem.</u>, 1983, **48**, 3661.
- 8. In the case of acetoxymethylation of amide (21), 22 (R=Me) was isolated as minor product in 6% yield. Although ^1H NMR spectra of 15 suggested the existance of 22 (R=CH $_2$ NMe $_2$) (8%), it was inseparable by column chromatography.

$$CONH_2$$
 $CONH_2$
 $CONH_2$
 $CONHCH_2OCH_2OA$

Recent synthesis of (±)-lupinine: T. Iwashita, T. Kusumi, and H. Kakisawa, J. Org. Chem., 1982, 47, 230; M. Okita, T. Wakamatsu, and Y. Ban, Heterocycles, 1983, 20, 401; (±)-epi-lupinine: A. R. Chamberlin, H. D. Nguyen, and J. Y. L. Chung, J. Org. Chem., 1984, 49, 1682; M. Ihara, T. Kirihara, K. Fukumoto, and T. Kametani, Heterocycles, 1985, 23, 1097; See also reference 7.

Received, 5th August, 1985