TRANSFORMATION OF 2,3,9,10-TETRAOXYGENATED PROTOBERBERINE ALKALOIDS INTO 2,3,10,11-TETRAOXYGENATED PROTOBERBERINE ALKALOIDS

Miyoji Hanaoka,* Mari Marutani, Kazuhiro Saitoh, and Chisato Mukai Faculty of Pharmaceutical Sciences, Kanazawa University Takara-machi, Kanazawa 920, Japan

Abstract- **2,3,10,11-Tetraoxygenated** tetrahydroprotoberberine (6) were synthesized from the corresponding 2,3,9,10 tetraoxygenated protoberberine alkaloids (1) through oxidative C_8-C_{8a} bond cleavage, photocyclization, and deoxygenation.

Naturally occurring tetraoxygenated protoberberine alkaloids can be classified into two groups¹ according to substitution patterns of oxygen functions in ring A and D. One is naturally abundant **2,3,9,10-tetraoxygenated** protoberberines such as berberine (la) and the other is **2,3,10,11-tetraoxygenated** ones as exemplified by pseudoberberine $(2q)$. Some of the latter type of alkaloids, pseudoberberine $(2q)$,

> 2,3,9,10-Tetraoxygenated Protoberberine

2,3,10,11-Tetraoxygenated Protoberberine

pseudocoptisine (2 c), etc. have recently isolated.²

In the course of our studies on transformation of protoberberine alkaloids to fully aromatized benzo [c] phenanthridine alkaloids, $3, 4, 5$ we required pseudoberberine (2a), a **2,3,lO,ll-tetraoxygenated** protoberberine for a synthesis of nitidine, 4 an antileukemic benzo [c]phenanthridine alkaloid. Altough pseudoberberine $(2q)$ has so far been synthesized by a conventional method, 6 simple conversion of commercially available berberine $(|q\rangle$ into pseudoberberine $(2q)$ would provide an alternative synthesis because of easy access of the starting material. We report here a novel and convenient method for a synthesis of 2,3,10, 11-tetraoxygenated protoberberine alkaloids from **2,3,9,10-tetraoxygenated** protoberberine alkaloids through oxidative C_8-C_{8a} bond fission of the latter, followed by successive photo-induced cyclization and deoxygenation. Berberine (10) was oxidized with 1.3 eq. of m-chloroperbenzoic acid⁷ in dry tetrahydrofuran in the presence of 2 eq. of sodium hydride in a stream of nitrogen at room temperature to afford polyberbine **(30)** 176%: mp 165-166'C; **m/z** 369 (M^{\dagger}) ; v 3500, 1660; 6 8.10, 7.27 (each lH, each s)]. Polyberbine, recently isolated from **Berberis** *vaZdiviana* Phil. ,8 has already been synthesized from

 $a:R^1+R^2=CH_2$, $R^3=R^4=Me$ b: $R^1=R^2=R^3=R^4$ =Me c: $R^1+R^2=R^3+R^4=CH_2$

berberine ($|0\rangle$ by a similar oxidation using sodium bicarbonate instead of sodium hydride though in 20% yield.⁹ Similar treatment of palmatine ($|b|$) and coptisine (1c) gave polycarpine (3b)¹⁰ [44%; mp 176-177°C(lit.⁹ mp 179-180°C); m/z 385 (M^+); v 3500, 1660; δ 8.13, 7.26 (each 1H, each s)] and $3c^{11}$ [39%; m/z 354 $({M}^{+}+1);$ ¹² v 3200, 1660; 6 8.03, 7.24 (each 1H, each s)], respectively, the yields are, however, lower in comparison with that of 10^{-13} Enamide photocyclization¹⁴ of polyberbine (30) with a high-pressure mercury lamp in ethanol in a stream of nitrogen, followed by sodium horohydride reduction produced 12-hydroxytetrahydropseudoberberine (40) [79%; mp 219-220°C; m/z 355 (M⁺), 176 (base peak); v 3550; 6 6.81, 6.57, 6.20 (each lH, each **s)].** Reductive removal of the hydroxy group in 40 was carried out via the phosphate (50). Treatment of 40 with diethyl chlorophosphate in the presence of sodium hydride afforded the phosphate (5g), hydrogenolysis of which with sodium in liquid ammonia¹⁵ at -70°C furnished tetrahydropseudoberberine (60) [53%; mp 177-178.5°C; δ 6.73, 6.64, 6.59, 6.57 (each lH, each s)]. The product was identified with the authentic specimen⁶⁾ by comparison of their spectra and thin-layer chromatographic behavior. Polycarpine $(3b)$ and $3c$ also underwent a photo-induced cyclization to provide the ⁺12-hydroxytetrahydroprotoberberine (4b) [70%; *m/z* 371 (M), 192 (base peak); v 3520; δ 6.78, 6.62, 6.50 (each lH, each s)] and ($4C$) [65%; mp 232-233°C; m/z 339 (M+). 176 (base peak); **v** 3400; 6 6.88, 6.65, 6.22 (each lH, each s)l, both of which were subsequently converted into $(+)$ -xylopinine ($6b$) [62%; mp 157-159°C; δ 6.74, 6.67, 6.62, 6.58 (each IH, each s)] and tetrahydropseudocoptisine ($6C$) $[44\$; mp 213-214°C; δ 6.71, 6.60, 6.58, 6.53 (each lH, each s)] via the phosphate (5b) and (5c), respectively, by the same treatment as that described for 60. The synthetic $(+)$ -xylopinine and tetrahydropseudocoptisine were proved to be identical with the authentic specimens. 17,18 Thus, we have developed a novel and convenient method for a synthesis of 2,3,10, 11-tetraoxygenated protoberberines from naturally abundant 2,3,9,10-tetraoxygenated protoberberines.

REFERENCES AND NOTES

- 1) T. Kametani, The Chemistry of the Isoquinoline Alkaloids, "01.2, Kinkodo Publishing Company, Sendai, Japan, 1974, pp. 189-209: a 1,2,10,11-tetraoxygenated protoberberine, caseadine is also known.
- 2) C. Moulis. J.Gleye, and E. Stanislas, Fhytochemistry, 1977, 16, 1283.
- **3)** M. Hanaoka, T. Motonishi, and C. Mukai, Cham. Commun., 1984, 718.
- 4) M. Hanaoka, H. Yamagishi, M. Mari, and C. Mukai, *Tetrahedron Letters,*
1984, <u>25</u>, 5169. 5) M. Hanaoka, H. Yamagishi, C. Mukai, Chem. Pharm. BUZZ., 1985, *2,* 1763.
-
- *6)* R.D. Haworth, W.H. Perkin, Jr., and J. Rankin, J. Chem. Soc., 1924, 125, 1686.
- 7) H. Ishii and T. Ishikawa, J. Chem. Soc. Ferkin Trans. 1, 1984, 1769.
- 8) S. Firdous, A.J. Freyer, M. Shamma, and A. Urzúa, J. Am. Chem. Soc., **H. Ishii and T. I:
S. Firdous, A.J. 1
1984, <u>106</u>, 6099.
N. Moorgaar on 1</u>**
- 9) N. Murugesan and M. Shamma, Tetrahedron Letters, 1979, 4521.
- 10) Polycarpine was isolated from Enantia polycarpa Engl. et Diels: A. Jossang, **¹**M. Leboeuf, A. Cave, M. Damak, and C. Riche, C.R. Acad. **Sci., Ser.** C, 1977, 284, 467.
- 11) N. Murugesan and M. Shamma, Heterocycles, 1980, 14, 585.
- 12) Measured by Chemical Ionization Method.
- 13) M. Shamma obtained 3b and 3c in 40%⁹ and 40-50%¹¹ yield, respectively.
14) G.R. Lenz, *J. Org. Chem.,* 1977, <u>42</u>, 1117.
-
- 15) R.A. Rossi and J.K. Bunnett, J. Org. Chem., 1973, 38, 2314.
- 16) n-Butyllithium was used instead of sodium hydride in the case of $4c$.
- 17) T. Kametani, M. Takeshita, F. Satoh, and K. Nyu, *Yakugaku Zasshi*,
1974, <u>94</u>, 478. 1974, 94, 478.
18) R.M. Sotelo and D. Giacopello, Aus. *J. Chem.*, 1972, 25, 385.
-

Received, 9th August, 1985