NEVADENINE AND NEVADENSINE, TWO NEW DITERPENOID ALKALOIDS FROM ACONITUM NEVADENSE VECHTR. Antonio G. González, *a) Gabriel de la Fuente, b) Tomás Orribo, b) and Rafael Díaz Acosta^{a)} - a) Instituto Universitario de Química Orgánica, Universidad de La Laguna, Tenerife, Canary Islands, Spain - b) Instituto de Productos Naturales Orgánicos, CSIC, La Laguna, Tenerife, Canary Islands, Spain <u>Abstract</u> - Neoline, chasmanine, isotalatizidine, and two new C-19 diterpenoid alkaloids, nevadenine and nevadensine, were isolated from <u>Aconitum nevadense</u>. The structures of the new bases were established by ¹H and ¹³C-nmr spectroscopy, and chemical derivation to known alkaloids. From the aerial parts of plants of <u>Aconitum nevadense</u> Vechtr., collected in Sierra Nevada, Granada, Spain, we have isolated two new C-19 diterpenoid alkaloids, nevadenine (2) and nevadensine (5) as minor constituents. Nevadenine was isolated as a resin, and its elemental composition $C_{23}H_{35}NO_5$ established by high resolution mass measurement; M^+ (6%), M^+ -CH $_3$ (5%), M^+ -OCH $_3$ (100%), M^+ -C $_3H_4$ O (63%) and $|M^+$ -OCH $_3|$ - C_3H_4 O (60%). The loss of acrolein in the ms 1 and the ir (KBr) adsorptions at 995 and 815 cm $^{-1}$ 2 indicated the presence of the carbinolamine inner ether in the molecule. The 1 H-nmr spectrum (200 MHz, CDCl $_3$) displayed signals at 61.04 (3H, t, J \approx 7 Hz, N-CH $_2$ -CH $_3$), 2.70 (2H, q, J = 7 Hz, N-CH₂-CH₃), 3.29 and 3.33 (3H each, s, two OCH₃), 3.67 (1H, m, W $\frac{1}{2}$ = 7.5 Hz, C-1 β H), 3.78 (1H, s, C-19H) and 4.17 (1H, t, J = 5 Hz, C-14 β H). Treated with Ac₂O-Py, nevadenine gave a monoacetate (3) as a resin, M⁺ 447 (1%); ir (KBr) 1730 and 1230 cm⁻¹ (acetate). Its 1 H-nmr spectrum gave signals at δ 2.06 (3H, s, acetate) and 4.85 (1H, t, J = 4.8 Hz), indicating that the C-14 α OH group was acetylated. Nevadensine (5) was also isolated as a resin and gave an analysis corresponding to $C_{23}H_{35}NO_6$ by high resolution ms; M^+ (3%), M^+ -CH₃ (8%), M^+ -OCH₃ (32%), M^+ -C₃H₄O (100%), $|M^+$ -OCH₃| - C_3H_4O (85%). As in the case of nevadenine the ms peaks caused by ejection of acrolein and the ir (KBr) adsorptions at 890 and 990 cm⁻¹ suggested the presence of the C-1-O-C-19 inner ether in the new base. The 1 H-nmr spectrum (CDCl₃) exhibited signals at δ 1.04 (3H, t, J = 7.2 Hz, N-CH₂-CH₃), 3.25 and 3.30 (3H each, s, two OCH₃), 3.60 (1H, m, W_2^1 = 8 Hz, C-16H), 3.89 (1H, s, C-19H) and 4.14 (1H, t, J = 4.8 Hz, C-146H). Upon acetylation with Ac_2 O-Py nevadensine yielded a monoacetate (6) as a resin, M^+ 463 (2%), ir (KBr) 1730 and 1240 cm⁻¹ (acetate). The acetate group was located at C-14 as inferred by the signals at $\delta 2.00$ (3H, s) and 4.79 (1H, t, J = 4.8 Hz) in the 1 H-nmr spectrum. The oxidation of isotalatizidine (1) 3 with KMnO $_4^4$ led to nevadenine (2) in 80% yield and the NaBH $_4$ reduction of nevadensine (5) gave virescenine (4) 5 in 90% yield (mp, ir, ms and 1 H-nmr identical). Therefore the structures of the new alkaloids were firmly established. Additional support for these structures was also derived from $^{13}\text{C-nmr}$. Assignments were made by comparison with the spectrum of isotalatizidine (1) 6 and virescenine (4) 5 , taking into account the α - and β -effects produced upon acetylation. As in the case of pentagynine, 7 18-methoxygadesine, 8 and graciline, 9 the new doublet at 69 ppm, and the β - or γ -effects observed on the C-3, C-4, C-5 and C-18 resonances in the spectra of nevadenine (2) and nevadensine (5), compared with those of the other alkaloids considered, corroborated the existence of the C-1-O-C-19 ether in the new compounds. The published assignments for C-10 and C-13 in virescenine (4) have been reversed on the basis of the chemical shifts observed in nevadensine (5) and its acetate (6), and the reported values for delcosine. 10 Neoline, 11 chasmanine, 11 and isotalatizidine 3 were also found in this plant, and identified by their mp, ms, and 14 H and 13 C-nmr spectra. $^{13}\mathrm{C}$ Chemical shifts and assignments | Carbon | 1 | 2 | 3 | 4 | 5 | 6 | |-----------------|------|------|-------|------|------|-------| | 1 | 72.7 | 87.6 | 87.4 | 72.4 | 85,3 | 85.3 | | 2 | 28.8 | 24.3 | 24.3 | 28.5 | 25.9 | 25.9 | | 3 | 30.6 | 22.8 | 22.9 | 29.3 | 22.3 | 22,3 | | 4 | 37.8 | 42.9 | 42.8 | 37.7 | 42.7 | 42.6 | | 5 | 42,2 | 37.2 | 36.8 | 41.9 | 36.7 | 36.5 | | 6 | 25.6 | 25.8 | 25.8 | 33.5 | 32.5 | 32.6 | | 7 | 45.5 | 44.5 | 44.0 | 86.1 | 86.7 | 85.3 | | 8 | 74.2 | 72.3 | 72.9 | 76.2 | 74.1 | 74.7 | | 9 | 47.4 | 45.8 | 43.9 | 48.0 | 46.7 | 43.4 | | 10 | 44.8 | 54.9 | 55.9 | 43.6 | 43.9 | 43.7 | | 11 | 49.1 | 47.8 | 48.0 | 49.4 | 47.2 | 47.9 | | 12 | 27.8 | 27.1 | 29.0 | 26.9 | 27.3 | 29.4 | | 13 | 40.7 | 38.6 | 36.5 | 39.7 | 38.9 | 37.9 | | 14 | 76.3 | 75.7 | 76.7 | 75.5 | 75.5 | 76.1 | | 15 | 43.1 | 39.7 | 41.9 | 36.0 | 35.3 | 35.0 | | 16 | 82.6 | 82.1 | 82.2 | 81.9 | 81.9 | 82.5 | | 17 | 64.1 | 62.1 | 61.2 | 64.9 | 64.4 | 63.8 | | 18 | 79.3 | 74.4 | 74.3 | 78.7 | 73.9 | 73.9 | | 19 | 56.9 | 69.4 | 69.4 | 55.8 | 69.0 | 69.2 | | 20 | 48.6 | 48.2 | 48.0 | 50.5 | 47.9 | 47.8 | | 21 | 13.2 | 14.6 | 14.5 | 13.9 | 14.1 | 14.2 | | 16' | 55.9 | 56.6 | 56.2 | 56.4 | 56.6 | 56.3 | | 18' | 59.1 | 59.5 | 59.5 | 59.4 | 59.5 | 59.5 | | C0 | | | 170.7 | | | 171.2 | | CH ₃ | | | 21.4 | | | 21.5 | | | | _ | | | | | Chemical shifts in ppm downfield from TMS. Solvent deuterochloroform. ## ACKNOWLEDGEMENT This work has been partially financed by a grant from the Comision Asesora de Investigación Científica y Técnica of Spain. We thank Professor S.W. Pelletier for a sample of virescenine. ## REFERENCES - S.W. Pelletier and S.W. Page, 'Chemistry of Diterpene Alkaloids' in "The Alkaloids', ed. by J.E. Saxon, The Chem. Soc., London, 1973, vol. 3, p. 235. - 2. R. Auct, D. Clayton, and I. Marion, Can. J. Chem., 1957, 35, 397. - S.W. Pelletier, L.H. Keith, and P.C. Parasarathy, <u>J. Am. Chem. Soc.</u>, 1967, 89, 4146. - 4. O. Achmatowicz, T. Tsuda, and L. Marion, Can. J. Chem., 1965, 43, 2336. - 5. S.W. Pelletier, N.V. Nady, A.P. Venkov, and S.B. Jones, <u>Heterocycles</u>, 1979, 12, 779. - V. Boido, O.E. Edwards, K.L. Handa, R.J. Kolt, and K.K. Purushothaman, Can. J. Chem., 1984, 62, 778. - 7. A.G. González, G. de la Fuente, and R. Díaz, Phytochemistry, 1982, 21, 1781. - 8. A.G. González, G. de la Fuente, and O. Munguía, Heterocycles, 1983, 20, 409. - 9. A.G. González, G. de la Fuente, M. Reina, and I. Timón, <u>Heterocycles</u>, 1984, 22, 667. - B.S. Joshi, J.A. Glinski, H.P. Chokski, S. Chen, S.K. Srivastava, and S.W. Pelletier, <u>Heterocycles</u>, 1984, 22, 2037. - 11. S.W. Pelletier, Z. Djarmati, S. Lajsic, and W.H.D. Camp, <u>J. Am. Chem. Soc.</u>, 1976, 98, 2617. Received, 5th July, 1985