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Abstract - The preparation of variocus isomeric 3-aryloctahydroindoles, potential
synthons for the total synthesis of the montanine-1ike Amaryllidaceae alkaloids,

is described.

The montanine alkaleoids comprise a small number of bases isolated from Amaryllidaceae species* char-
acterized by having a 5,l1-methanomorfanthridine skeleton. Although an encrmous synthetic effort
has been directed towards other members of the series, e.g., lycoramines, galanthamines, and 5,10b-
ethanophenanthridines,? there are but a few structure elucidation studies regarding the montanine
bases.'

As continuation of our synthetic program dealing with alkaloids from Amarxllidaceae,3 we now report
the first approaches to the total synthesis of the montanine compounds.

An antithetic analysis (Scheme 1) of montanine (I) itself provides in principle, after removal of
the benzylic carbon atom at positicn 6 and simpiification of the oxygenation pattern, three main
routes for the construction of the key 3a-aryioctahydroindole nucleus 1I. Routes A and C have a
common intermediate, namely, the functionalized 1-nitrocyclohexene derivative 1I11," whereas route

B utilizes the arylidenecyclohexanone precursor IV.

Along the Yines of strategy A (Z=H:), we proceeded to react 3,4-{methylenedicxy)phenylacetonitrile

(1} with i-nitrecyclohexeng" (2) (nBuLilTHF/-50°C) to furnish a 65% yield of a 27:1 mixture of the
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cis- and trans- addition products 3 and 4, respectively (Scheme II). In fact, the major isomer 3
is the result of a kinetically controlled addition reaction. Moreover, the steregselectivity of

this transformation s both temperature and substrate dependent since reaction of N,N-diethyl 3,4-
{methylenedioxy)phenylacetamide with l-nitrocyclohexene under similar conditions (nBuLi/THF/—20°C)

furnished instead a 1:1 mixture of the correspeonding cis- and trans- addition products in 51%

overall yield,.
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When the major isomer 3, mp 105-107°C (Et0OH), was submitted to the Jaccbson® modification of the
Nef reaction, a 79% yield of a 1:1 (*H-NMR} mixture of the threo - 5a and erythro - 5b isomers® was
realized (see Table I). Whereas the threo isomer proved to be crystals, mp 130-131°C (EtOH), the
erythro cne remained as an oil. Subsequent reductive cyclization of this mixture (Urushibara's ni-
ckel,’ iPrOH, 50 psi, 45-55°C, 48 h) afforded the cily octahydroindole 6a {R=H) in 52% yield. Re-

action of the Tatter with ethyl chloroformate (CH.C1,, Et:N, 0°C) providec the protected cis- (6b)
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and trans- cctahydroindoles (6c).® as a 1:1 mixture (*H-NMR} separable by crystallization. Iscmer

6b showed to be crystals, mp 113-115°C {EtOH), while the other remained as an 0il.°
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On the other hand, route C was also developed as depicted in Scheme II. TIsomer 3 was reduced with
1lBuZJf\H-I {THF, 0°C; 81%) to yield a 1:1 mixture ('H-NMR) of the oily cis- (7a) and the crystalline
mp 92-93°C (EtOH}, trans- nitreoaldehyde 7b after careful work-up. When submitted to the reductive
cyclizaticn conditions described above, 7a provided the cis- fused octahydroindole® 8 bearing the
desired 3a-aryl substituent in 57% yield. However, the trans-isomer 7b furnished only mon-cyclic
and/or polymeric materials under the same conditions.

Morzover, route B (Scheme I1I) was alsc appraised as follows. Piparcnal (9) wes allowed to react
with cyclchexanore under controlled conditions {NaOH catalysis) to give piperenylidenecyclchexanone

(10), mp 87-88°C (1it.*® mp 88-88°C) in $2% yield, together with a small amount of the bis-pipero-
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nylidene derivative 11, mp 188-189°C (EtOAc). Further reaction of 10 with potassium cyanide under
Liotta's conditions®® {CzHe, acetone cyanohydrin, 18-crown-6, reflux, 6 h) provided ketons 5 (see
Scheme II) in 61% yield as the readily separable 67:33 mixture of the same threo-5a and erythro-5b
isomers, respectively (vide supra), thus providing an alternate, amenable for scale-up route to

such versatile intermediates.
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Furthermore, when enone 10 was allowed to react with nitromethane using a "supported" tetrabutyl-
ammonium fluoride catalyst,*® ketone 12 was obtained in 92% yield as the single threo diasteroiso-

mer,t? mp 162-163°C (EtOH)}. Reductive cyclization, as before, afforded the oily trans-fused octa-
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hydroindole® 13 in 68% yield. See Table I for a collection of selected H-NMR data for relevant
compounds. A careful analysis of ihe data shown there suggests that for those compounds having
large coupling constants J = 10-11 Hz (ie., entries 3, 7a, 7b and 12), a fix in conformation,
caused by efectrostatic interactions amongst the various functional groups must prevail. However,
trans product 4 shows a coupling constant of only 4 Hz. MoTlecular models show that indeed in this
case the cyano group can not interact adequately with the nearby nitro function and thus the ob-
served constant should correspond te the average *J value for this particular non-rigid system.
Considering the importance and availability of ketone 12, several other reduction reactions were
evaluated as well. Thus, reacticn with activated Zn** (1:9 v/v aquecus HOAc, rt, 0.5 h} furnished
nitrone 14 (Umax 1615 cm '), mp 142-144°C {EtOAc-EtOH), in 72% yield, which upon petassium borchy-
dride®® treatment (EtCH-H,0, rt, 3 h) gave the cyclic hydroxylamine 15 in 66% yield. Finally,
reduction under Chandrasekaran's conditions?® (TiCl,, Mg amalgam, THF, rt, 1.5 h) produced imine
16 together with a small amount of enamine 17.

In conclusion, we have devised several easy to implement synthetic entries into the 3-aryloctahy-
droindole system. The utilization of such intermediates in the total synthesis of the montanine-

1ike alkalcids is now in progress and will be reported elsewhere.
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