SATURATED HETEROCYCLES, 93¹.

FACILE DEHYDROGENATION AND AN UNEXPECTED CATALYTIC HYDROGEN

TRANSFER REACTION OF 1,2,5,6,7,8-HEXAHYDROQUINAZOLIN-4(3H)-ONES

Ferenc Fülöp and Gábor Bernáth*

Institute of Pharmaceutical Chemistry, University Medical School, H-6720 Szeged, Eötvös u. 6, Hungary

<u>Abstract</u> - 2-Phenyl-1,2,5,6,7,8-hexahydroquinazolin-4(3<u>H</u>)-one ($\underline{2}$) and the related 2-(3'-cyclohexenyl) derivative ($\underline{4}$) were observed to undergo a facile dehydrogenation and an intermolecular catalytic hydrogen transfer in the presence of Pd/C, even in a hydrogen atmosphere.

In a continuation of our work on bicyclic, fused-skeleton 1,3-heterocycles (see, e.g. refs. 2,3), 2-phenyl-1,2,5,6,7,8-hexahydroquinazolin-4(3 $\underline{\text{H}}$)-one 7 ($\underline{2}$) has been synthesized from $\underline{1}^{5,6}$ for the comparative polarographic investigation 4 of variously saturated pyrimidin-4-ones condensed with an alicyclic ring. When $\underline{2}$ (0.5 g) was stirred in ethanol for 10 h at ambient temperature and pressure under a hydrogen atmosphere in the presence of 5% palladium-on-charcoal (0.1 g) (Method A), instead of reduction an unexpected dehydrogenation was observed, which gave the 5,6,7,8-tetrahydroquinazoline derivative $\underline{3}$. Refluxing $\underline{2}$ in toluene with Pd/C for 30 min (Method B) also afforded 3, in nearly quantitative yield.

 $2-(3'-\text{Cyclohexeny1})-1,2,5,6,7,8-\text{hexahydroquinazolin}-4(3\underline{\text{H}})-\text{one}$ ($\underline{4}$) was synthesized from $\underline{1}$ with 1,2,5,6-tetrahydrobenzaldehyde in the presence of ammonium hydroxide, similarly as for the preparation of $\underline{2}$. $\underline{\text{Via}}$ Method A in 10 h, $\underline{4}$ gave 2-cyclohexyl-5,6,7,8-tetrahydroquinazolin-4(3 $\underline{\text{H}}$)-one ($\underline{6}$). Interestingly, when Method B was used, the 2-cyclohexenyl derivative $\underline{4}$ was not dehydrogenated to $\underline{5}$, but a catalytic hydrogen transfer reaction occurred to give the 2-cyclohexyl derivative $\underline{6}$ again. This conversion belongs to the rare group of hydrogen transfer reactions in which the transfer takes place in the same molecule, containing a hydrogen donor and an acceptor unit.

In order to prove the intermolecular character of the observed hydrogen transfer, an equivalent amount of 9-methyl-1,2,3,4-tetrahydropyrido [2,1-b] quinazolin-ll-one [0,1] was added to [0,1]; ring C of [0,1] can readily be reduced, and thus it may act as a proton acceptor in the reaction. The crude product obtained by Method B from the mixture of [0,1] contained, according to [0,1] H NMR evidence, about 20% of the octahydro compound [0,1] B. The latter was identified by the H(9) signal, which appears in a comparatively low field ([0,1] ppm) owing to the anisotropic effect of the C=0 group, [0,1] and also the doublet of the [0,1] at [0,1] at [0,1] ppm ([0,1] and [0,1] when pure [0,1] was added to the crude product, these signals unequivocally increased. Formation of the octahydro derivative [0,1] unambiguously proves that the catalytic hydrogen transfer [0,1] is an intermolecular process.

When $\underline{4}$ was refluxed in the presence of Pd/C for 30 min in the strongly proton acceptor solvent nitrobenzene (Method C), the product was surprisingly neither the expected cyclohexenyl derivative $\underline{5}$ nor $\underline{6}$, but the 2-phenyl derivative $\underline{3}$; hence, both dehydrogenation of the hetero ring and aromatisation of the cyclohexenyl ring took place.

Further study of the aromatisation reaction $2 \longrightarrow 3$ is in progress.

No.12	Mp (^O C) Solvent	Yield ³ (%)	¹ Η NMR chemical shifts (δ _{TMS} = 0 ppm)			
			Aliphatic protons	<u>H</u> (2)	ArH <u>m</u> - and <u>p</u> - hydrog	
2	153-155 ⁰ EtOH (lit. ¹¹ : 154-156 ⁰)	64	1.57, 1.76, 2.16, 2.31		7.40 (m, 3H)	7.52 (m, 2H)
3	248-250 ⁰ Et0Ac (lit. ⁹ : 246-247 ⁰)	94 (B)	1.81, 2.60 2.76 (3xm, 8H)	-	7.51 (m, 3H)	8.23 (m, 2H)
<u>4</u> b	172-174 ⁰ EtOH		1.24-2.7 (m, 14H)	4.58 (d, 1H <u>J</u> ~5.5 Hz	-	-
<u>6</u>	199-201 ⁰ EtOAc	77 (A) 84 (B)	1.35, 1.79, 2.52, 2.64 (4xm, 19H)	-	-	-

^a The method used is given in brackets. ^b $\delta_{\text{CH=CH}}$ = 5.70 ppm (s, 2H).

ACKNOWLEDGEMENT

The authors' thanks are due to Miss Judit Árva for very valuable technical assistance and to Mr. István Pelczer (EGIS Pharmaceuticals, Budapest) for the $^{\rm l}{}_{\rm H}$ NMR spectra.

REFERENCES AND NOTES

- Part 92: S. Stankovic, Á. Kapor, B. Ribár, L. Karanovic, A. Kálmán, Gy. Argay,
 Stájer and G. Bernáth, J. Mol. <u>Structure</u>, accepted for publication.
- F. Fülöp, G. Bernáth, Gy. Argay, A. Kálmán and P. Sohár, <u>Tetrahedron</u>, 1984, 40, 2053.
- 3. F. Fülöp, G. Bernáth, P. Sohár and I. Pelczer, J. Chem. Soc. Perkin Trans. 1, 1984, 2043.
- P. Pflegel, Ch. Kühmstedt, F. Fülöp and G. Bernáth, <u>Pharmazie</u>, 1983, <u>38</u>, 373;
 1984, <u>39</u>, 106; P. Pflegel, Ch. Kühmstedt, J. Lázár and G. Bernáth, <u>Pharmazie</u>,
 1984, <u>39</u>, 39.
- 5. G. Zigeuner and G. Gübitz, Monatsh., 1970, 101, 1547 and references cited therein.
- C. Bischoff and H. Herma, <u>J. Prakt. Chem.</u>, 1976, <u>318</u>, 773; C. Bischoff,
 E. Schröder and E. Gründemann, <u>J. Prakt. Chem.</u>, 1984, <u>326</u>, 849.
- 7. C. Bischoff, H. Herma and E. Schröder, J. Prakt. Chem., 1976, 318, 895.
- 8. G. Brieger and T. J. Nestrick, Chem. Rev., 1974, 74, 567.
- 9. G. Bernáth, F. Fülöp, I. Hermecz, Z. Mészáros and G. Tóth, <u>J. Heterocyclic Chem.</u>, 1979, <u>16</u>, 137.
- I. Hermecz, B. Podányi, Z. Mészáros, J. Kökösi, Gy. Szász and G. Tóth,
 J. Heterocyclic Chem., 1983, 20, 92.
- G. Bernáth, T. Janáky, Gy. Göndös, J. Lázár and Z. Ecsery, <u>Pharmazie</u>, 1983,
 28, 270.
- 12. All prepared compounds gave satisfactory microanalyses. IR spectra were recorded in KBr pellets with a SPECORD 75 IR instrument. ¹H NMR spectra were recorded in CDCl₃ solution at 250 MHz with a Bruker WM-250-FT spectrometer at room temperature, using FMS as internal standard.

Received, 6th August, 1985