
FORMAL SYNTHESIS OF LAVENDAMYCIN METHYL ESTER: THE REGIOSELECTIVE SYNTHESIS TO THE BROMOQUINOLINEQUINONE SYSTEMS OF KEY INTERMEDIATE

Satoshi Hibino, Miko Okazaki, Masataka Ichikawa, Kohichi Sato, and Takashi Ishizu Faculty of Pharmacy & Pharmaceutical Sciences, Fukuyama University 985 Higashimura, Fukuyama, Hiroshima 729-02 Japan

<u>Abstract</u>—We achieved a formal synthesis of lavendamycin methyl ester as follows. The Pictet-Spengler reaction of 8-benzyloxyquinolin-2-aldehyde <u>4</u> with β -methyltryptophan ethyl ester <u>5</u>, gave pentacyclic β -carboline <u>7</u>. Hydrogenolysis of benzyl ether <u>7</u> and bromination of 8-hydroxyquinoline <u>8</u> afforded 5,7-dibromo-8-hydroxyquinoline <u>11</u>. Oxidation of bromophenol <u>11</u> by cerium ammonium nitrate proceeded regioselectively to the desired <u>p</u>-quinone system <u>13</u>. On the other hand, the ethyl ester <u>8</u> was converted into its methyl ester <u>9</u> and led to the methyl ester of bromoquinolinequinone <u>14</u> regioselectively in the same way, that is, Kende's intermediate.

In 1981 Lavendamycin <u>1</u> was isolated by Doyle and co-workers¹ from fermentation broths of <u>Streptomyces lavendulae</u> which was structually and biogenetically related to the antitumor antibiotic streptonigrin <u>3</u>². Recently Kende reported a first total synthesis of lavendamycin methyl ester 2³. On the other hand, Boger⁴ has shown an elegant approach to the tricyclic β -carboline moiety of lavendamycin <u>1</u>. We now wish to report a formal synthesis of lavendamycin methyl ester <u>2</u> using the previously described synthetic pathway⁵, that is, the regioselective synthesis of bromoquinolinequinone systems <u>13</u> and <u>14</u> which are synthetic precursors of lavendamycin <u>1</u>. For the synthesis of pentacyclic β -carboline <u>7</u> having an appropriate quinoline moiety, we chose the Pictet-Spengler type reaction; 8-benzyloxyquinolin -2-aldehyde <u>4</u>⁶ (mp 92-93°C) was reacted with β -methyltryptophan ethyl ester <u>5</u> in

benzene to afford an intermediay tetrahydro-ß-carboline <u>6</u>, which was followed by oxidation with 5 % Pd-C in xylene under reflux to aromatic pentacyclic ß-carboline $\frac{7^8}{100}$ (75 %, mp237-239°C). Cleavage of benzyl ether <u>7</u> by 10 % Pd-C in the presence of hydrogen in tetrahydrofuran gave 95 % of 8-hydroxyquinoline derivative <u>8</u>⁹ (mp 227-228°C). For the confirmation of this compound, the ethyl ester <u>8</u> was converted to the known phenolic methyl ester <u>9</u> (mp 204-206°C; Lit.³ mp 201-205°C) by hydrolysis (10 % NaOH, THF) and esterification (anhydrous MeOH, BF₃·OEt₂). Dibromination of both phenolic ester <u>8</u> and <u>9</u> using 2,2,4,4-tetrabromocyclohexadien-1-one <u>10</u>¹⁰(2 equivalent) in 10 % methanolic chloroform gave the corresponding dibromophenol <u>11</u>¹¹ (90 %, mp 259-261°C) and <u>12</u> (92 %, mp 252-254°C), respectively. Oxidation of dibromophenol <u>11</u> and <u>12</u> by cerium ammonium nitrate¹² (2.2 equivalent) in aqueous tetrahydrofuran proceeded regioselectively to give the desired <u>p</u>-quinone systems <u>13</u> (30 %, mp 291-294°C) and 31 %, mp 285-287°C; Lit.³ mp 285-287°C; ¹³. Physical data and ¹H-NMR spectrum of bromoquinolinequinone methyl ester <u>14</u> were identical in all respects with those of Kende's intermediate^{3,13}. Thus a formal synthesis of lavendamycin methyl ester 2 has been achieved and the structure of intermediate 13 has been also confirmed simultaneously.

ACKNOWLEDGEMENT

We thank Prof. A. S. Kende (Department of Chemistry, University of Rochester, U. S. A.) for sending a ¹H-NMR spectrum of bromoquinolinequinone methyl ester. We also thank Dr. T. W. Doyle (Bristol Laboratories, Syracuse, U. S. A.) for useful discussions.

REFERENCES AND NOTES

- a) T. W. Doyle, D. M. Balitz, R. E. Brulich, D. E. Nettleton, S. J. Gould,
 C.-H. Tann, and A. E. Moews, <u>Tetrahedron Lett.</u>, <u>1981</u>, 4595. b) D. M. Balitz,
 J. A. Bush, T. W. Doyle, F. A. O'Herron, and D. E. Nettleton, <u>J. Antibiotics</u>,
 <u>35</u>, 259 (1982).
- 2. a) F. Z. Basha, S. Hibino, D. Kim, W. E. Pye, T.-T. Wu, and S. M. Weinreb, <u>J</u>. <u>Amer. Chem. Soc.</u>, <u>102</u>, 3962 (1980). b) S. M. Weinreb, F. Z. Basha, S. Hibino, N. A. Khatri, D. Kim, W. E. Pye, and T.-T. Wu, <u>ibid</u>., <u>104</u>, 536 (1982)...c) A. S. Kende, D. P. Lorah, and J. Boatman, <u>ibid</u>., <u>103</u>, 1271 (1981). d) J. C. Martin, <u>J. Org. Chem</u>., <u>47</u>, 3761 (1982). e) D. L. Boger, and J. S. Panek, <u>ibid</u>., <u>48</u>, 621 (1983). For recent review, see: S. J. Gould and S. M. Weinreb, <u>Fortschr. Chem</u>. Org. Naturst., 42, 77 (1982).
- 3. A. S. Kende, and F. H. Ebetino, Tetrahedron Lett., 1984, 923.
- 4. D. L. Boger, and J. S. Panek, *ibid.*, <u>1984</u>, 3175.
- 5. S. Hibino, M. Okazaki, K. Sato, I. Morita, and M. Ichikawa, <u>Heterocycles</u>, <u>20</u>, 1957 (1983).
- 8-Benzyloxyquinolin-2-aldehyde <u>4</u> was prepared by a 4-step sequence from 8benzyloxyquinoline.
- 7. Ethyl ester of β-methyltryptophan was prepared by the reduction of ethyl αnitro-β-(3-indole)-butanoate (mp 121-123°C) which was made from the reaction of 3-(isopropylaminoethylidene)-indole and ethyl nitroacetate. a) D. A. Lyttle, and D. I. Weisblat, <u>J. Amer. Chem. Soc</u>., <u>69</u>, 2118 (1947), b) H. R. Snyder, and D. S. Matteson, <u>ibid</u>., <u>79</u>, 2217 (1957).
- 8. Mass spectrum: $\underline{m}/\underline{e}$ 487. ¹H-NMR(CDCl₃) δ 1.53(3H,t,J=7Hz), 2.15(3H,s), 4.52(2H, q,J=7Hz), 5.33(2H,s), 8.23 and 8.90(each 1H,d and d,J=8.5Hz).

- 9. For <u>8</u>; mass spectrum: <u>m/e</u> 397. ¹H-NMR(CDCl₃) δ1.55(3H,t,7Hz), 2.18(3H,s), 4.56 (2H,q,7Hz). For <u>9</u>; mass spectrum: <u>m/e</u> 383. ¹H-NMR(CDCl₃) δ2.18(3H,s), 4.11 (3H,s).
- 10. G. J. Fox, G. Hallas, J. D. Hepworth, and K. N. Paskins, <u>Organic Synthesis</u>, Vol <u>55</u>, 20 (1976).
- 11. Acetylation of dibromophenol <u>11</u> (<u>m/e</u> 553, 555, 557) by acetic anhydride and pyridine gave O-acetylated derivative in 98 % yield: mp 236-237°C, mass spectrum: <u>m/e</u> 595, 597, 599.
- 12. Although the pyridine-2,6-dicarboxylic acid <u>N</u>-oxide was used sometimes in the case of cerium ammonium nitrate oxidation, the yield of oxidation product did not increase in our case; L. Syper, K. Kloc, J. Mlochowski, and Z. Szulc, <u>Synthesis</u>, 1979, 521.
- 13. For <u>13</u>; mass spectrum: <u>m/e</u> 489, 491. ¹H-NMR(CDCl₃) 61.53(3H,t,J=7Hz), 3.13 (3H,s), 4.53(2H,q,J=7Hz), 7.43(1H,s), 8.23(1H,d,J=8.0Hz), 8.35(1H,d,J=8.4Hz), 8.94(1H,d,J=8.4Hz). For <u>14</u>; mass spectrum: <u>m/e</u> 475, 477. ¹H-NMR(CDCl₃) 63.15 (3H,s), 4.07(3H,s), 7.50(1H,s), 8.30(1H,d,J=8.0Hz), 8.42(1H,d,J=8.4Hz), 9.01 (1H,d,J=8.4Hz).

Received, 11th October, 1984