5'-METHOXYYATEIN AND 5'-METHOXYPODORHIZOL NEW LIGNANS ISOLATED FROM HERNANDIA CORDIGERA VIELL. 1

Pascal Richomme and Jean Bruneton* (CEPM, U.E.R. de Pharmacie, 16 Boulevard Daviers, 49000-Angers, France) Adrien Cavé (CCIPE, BP 5055, 34033-Montpellier Cedex, France)

Abstract - Two new dibenzylbutyrolactone lignans have been isolated from Hernandia cordigera: 5'-methoxyyatein and 5'-methoxypodorhizol. Their structures have been determined by means of high resolution ¹H nmr spectra, CD curves and acidic cyclization.

Leaves and barks of <u>Hernandia cordigera</u> (Hernandiaceae) are rich in lignans. ² The main compound has been found to be desoxypodophyllotoxin $\underline{1}$. We wish now to report two new dibenzylbutanolides: the 5'-methoxyyatein $\underline{2}$ and the 5'-methoxypodorhizol 5.

The lignans were isolated using the method reported in our precedent publication $rac{1}{2}$ and $rac{5}{2}$ were obtained pure by TLC.

The 5'-methoxyyatein $\underline{2}$, $\mathbb{C}_{23}H_{26}O_8$, α_D : -21° (CHCl $_3$, c=1), was obtained as an amorphous powder. Its ir spectrum shows the presence of a lactone (\vee 1760 cm $^{-1}$). The 1H nmr spectrum indicates a substitution by four aromatic methoxyl groups (δ 3.82, 3.83 (6H) and 3.85 ppm). These data and the fragmentation as obtained in the mass spectrum (m/z 181 and 165) are characteristic of a butenolide substituted in C-2 and C-3 by a trimethoxybenzyl group and a methoxy-methylenedioxybenzyl group. The major ion at m/z 181, resulting from a cleavage of the C-2 - C-6 bond and the ions at m/z 191 and 238 supplied a clear cut answer to the substitution pattern of $\underline{2}$, which is the 2-(3",4",5"-trimethoxybenzyl)-butyrolactone. The relative configuration in C-2 and C-3 can be established by a further study of the 1H nmr spectrum. The coupling constants J_{3-4a} and J_{3-4b} are almost equiva-

lent (7.0 Hz and 7.2 Hz respectively), which indicates that a trans relationship prevails between the two benzylic groups. ⁵ The different chemical shifts for H-4a ($\frac{5}{3}$ 3.87 ppm) and for H-4b (4.18 ppm) and the equivalence of the protons in C-6 and C-5 confirm the 2-3 trans configuration. ^{6,7} $\frac{2}{2}$ has the 2R,3R configuration since its CD curve is similar to that of yatein $\frac{3}{2}$ and of bursehenin $\frac{4}{2}$, ^{8,9,10} whose $\frac{1}{2}$ H nmr and $\frac{13}{2}$ C nmr spectra are also closely related to this of $\frac{2}{2}$ (Tab. 1).

The second lignan isolated $\underline{5}$ shows spectral data which point to a close relationship with compound $\underline{2}$. The ir spectrum displays, besides the absorption due to the lactone, a band at ∇ 3435 cm⁻¹ characteristic for a hydroxyl group. The 1 H nmr spectrum indicates the same substitution pattern on the two benzylic groups as in lignan $\underline{2}$. The mass spectrum shows a molecular ion at m/z 446 ($^{\circ}C_{23}H_{26}O_{9}$) meaning that $\underline{5}$ contains one oxygen more than $\underline{2}$. The base peak is at m/z 197, corresponding to the ion \underline{a} instead of 181 as in the mass spectrum of $\underline{2}$; therefore, the hydroxyl group must be in the C-6 position. The aliphatic region in the 1 H nmr spectrum is also in favor of a 2-3 trans configuration; it was confirmed by the fact that in an NOE difference study of the compound $\underline{5}$ no NOE effect was observed between H-2 and H-3. The lignan $\underline{5}$ is a 5'-methoxypodorhizol. Indeed an acidic cyclization of $\underline{5}$ led to the formation of aryltetrahydronaphtalenes which are identified as hernandin and picrohernandin. However, the formation of a 1- $^{\circ}$ 4 aryltetrahydronaphtalene by cyclization and the elimination of the absorption at $^{\circ}$ 435 cm⁻¹ in the ir spectrum by dilution is in favor of 6 S configuration.

	Table 1 : 13 C nmr spectra (CDCl $_3$, ppm)												
	C-1	C-2	C-3	C-4	C-5		-	C-2'	C-3†	C-4'	C-5'	C-6'	
2	178.3	46.5	41.1	71.1	38.7	35.3	132.3	108.5	149.2	134.0	143.5	102.4	
<u>3</u>	178.5	46.5	41.1	71.7	38.4	35.3	131.7	108.8	148.0	146.5	108.3	121.6	
4	178.7	46.6	41.1	71.2	38.4	34.7	131.7	108.8	148.0	146.4	108.3	121.6	
<u>5</u>	178.2	52.7	36.5	72.7	39.7	72.1	132.2	108.5	149.1	133.9	143.2	102.2	
<u>6</u>	178.3	52.7	36.3	72.0	39.3	72.0	131.3	108.4	147.7	146.1	107.8	121.4	
	C-1"	C-2"	C-3"	C-4"	C-5"	C-6"	OMe-3"	OMe-4"	0Me-5"	OMe-5	0-CH ₂ -0		
2	133.3	106.4	153.3	137.1	153.3	106.4	56.2	60.8	56.2	56.8	_		
<u>3</u>	133.4	106.4	153.3	137	153.3	106.4	56.1	60.8	56.1	-	101.4		
<u>4</u>	130.2	111.2*	121.4	149.2	121.4	111.3*	55.4	55.4	-	-	101.1		
<u>5</u>	136.5	102.4	153.4	137.5	153.4	102.4	56.2	60.8	56.2	56.8	101.4		
<u>6</u>	136.6	102.2	153.2	137.2	153.2	102.2	56.0	60.8	56.0	_	101.1		

1

 $\begin{array}{ccc} \underline{2} & R = R' = OMe \\ \underline{3} & R = H & R' = OMe \\ \underline{4} & R = R' = H \end{array}$

```
BELEBENCES AND NOTES
```

- min and J. Bruneton, Planta medica, 1984, l , 20). 1- Part VII in the serie "Study of Hernandiaceae" (part VI: P. Richomme, M. Lavault, H. Jacque-
- 3- A.M. Duffield, J. Heterocyclic Chem., 1967, 4, 16. 2- P. Richomme, M.-M. Debray, P. Cabalion and J. Bruneton, J. Natural Products, in press.
- 4- G. Rucker and B. Langman, Tetrahedron Lett., 1978, 457.
- J. Harmatha, M. Budezinsky and A. Trka, Coll. Czech. Chem. Comm., 1982, 47, 644.
- J.E.T. Corrie, G.H. Green, E. Ritchie and W.C. Taylor, Austr. J. Chem., 1970, 23, 133.
- 2: ir (CC1 $_{4}$, ν cm $^{-1}$) 2940-2915, 2840, 1760, 1585, 1500, 1235; ms: m/z 430 (M $^{+}$, 91), 265 7- Spectral data for 2 and 5
- (3, ppm): 6.36 (s, H-2" and H-6"), 6.17(4,H-2"), 6.15(4, H-6"), 5.94(dd, D-CH₂-D), $Amn\ H^L$;(91) 251 ,(81) 121 ,(9) 131 ,(2,87) 231 ,(001) 181 ,(9) 191 ,(8,5) 885 ,(2)
- f.18(q,H-4b), 3.87(q, H-4a), 3.85(s, OMe-5), 5.83(s, OMe-5" and UMe-5"), 3.82(s, OMe-4"),
- :_{3,2}C) (Z-H ,m)84.2 ,(dZ-H bns BZ-H ,m)22.2 ,(Z-H ,m) 03.5 ,(d3-H bns B3-H ,m)19.2
- (ZH 5:0-CH3-0C , zH 8.1 :, a, 'ς C, 'zH μ1 : da, sa C, 'zH 0.9 : da, eμ C, 'zH 2.7 : da, ξ C, 'zH 0.7; eμ, ξ C, 'zH μ.2
- (a, H-2" and H-6"), 6.01(a, H-2"), 5.95(a, H-2"), 5.91(d, 0-CH₂-0), 5.27(d, H-6), 06.3 :(mqq, ξ) $_{1}$ and $_{1}$:(4.11) $_{2}$ 21, (7.27) 181 ,(001) 791 ,(8.51 ,^M) $_{1}$ 344 $_{2}$ 344 ;em ;049 $\overline{2}$: \propto_D : -50.5° (CHCl $_3$, c=1); mp: L12-L13°c; ir (KBr, γ cm $^{-1}$) 3435, 2840, 1750, 1580, 1400,
- 4.57(q, H-4b), 3.96(q, H-4b), 3.82(s, OMe-5", OMe-4", and OMe-4" and OMe-4" (β. H-4b), 2.81(m, H-5)
- 0-cH3-0^C , zH 4.1 :, δ, '2^C , zH 8.7; ξ, d≷^C , zH 7.7 : ξ, εξ^C , zH 7.ξΙ : d2, εξ^C , zH 9.8 : d4, εμ^C 'ZH 8.7 : ^{dΔ, ξ} 'ZH \.C : ^{3, ζ} 'ZH δ : _{ξ, ζ} ' (GZ-H , m)ξ2.2 (GZ-H , m)ξ4.2 (Δ-H , m)ξδ.2
- Harmatha, Phytochemistry, 1979, 18, 1495; also by 5.K. Koul, 5.C. Tanaja, K.L. Dhar and C.K. 9- Yateinis also present in the plant and has been previously isolated by H. Erdtman and J.
- 10- D. Jakaoka, M. Imooka and M. Iroi, Bull. Chem. Soc. Japan, 1977, 50, 2821; S. Nishibe, B. Hi-Atal, Phytochemistry, 1983, 22, 999.
- 11- H. Yamaguchi, M. Arimoto, K. Tanoguchi, T. Ishida and M. Inoue, Chem. Pharm. Bull., 1982, sada and I. Inagaki, J. Pharm, Soc. Japan, 1974, 94, 522.
- 12- M. Kuhn and M. Arimoto, Helv. Chim. Acta, 1967, 50, 1946.

Received, 26th June, 1984