REACTIVITY OF CYANODITHIOFORMATE TOWARDS PRIMARY AMINES

Carmen de Diego, Encarnación Gómez, and Carmen Avendaño* Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain

<u>Abstract</u>-The two electrophilic carbon atoms of methyl cyanodithioformate $\underline{1}$ are able to react with primary amines giving a variety of different products depending upon the nature of amines. The one step reaction with $\underline{0}$ -dinucleophiles giving condensed heterocompounds in moderate to good yields is of interest.

Reports on the reactivity of methyl cyanodithioformate $\underline{1}$ mainly deal with its capability as dienophile.^{1,2} However its two electrophilic carbon atoms can react with nucleophiles to give heterocycles. In this work we have explored the possibilities of using $\underline{1}$ in heterocyclic synthesis through the study of its reactivity towards different types of amines. Compound $\underline{1}$ was prepared according to Simmons et al.³

Reactions were performed in dry ethanol at room temperature in most cases to avoid thermal decomposition of 1.³ The reaction time was always 16 h (see Table I). Elemental analyses, Ir, ¹H nmr and mass spectra (if possible) were in accordance with the proposed structures.

Compounds 2 and 3 were obtained by using 2 equivalent amines. Equivalent amounts of reagents gave complex mixtures of unidentified products. Increasing the amount of amine (1:3) did not improve the yields of compounds 2 and 3 and further condensations of 2 with excess of amine to oxalamidines did not occur. Compounds 2a, 2b, 2d and 3 were previously prepared by other methods.⁴⁻⁶ The behaviour of the ester 1 to give compounds 2 or 3 is analogous to the one shown by sodium cyanodithioformate salt with some primary amines.⁵ Two competitive reactions (Scheme 1) with extrusion of either hydrogen sulphide or methyl mercaptane to give the unisolated N-substituted cyanothioformamide seem to take place.

lable I					
Amine	M.R. ^a	Reaction Y Product	ield(%)	mp (°C) ^b	Lit. mp (°C)
Benzylamine	1:2	<u>2a</u>	26	115-116 ^C	120-120.8 ⁴ , 115-116 ⁸
Phenethylamine	1:2	<u>2 b</u>	24	106-107 ^C	115-115.7 ⁴
<u>n</u> -Butylamine	1:2	<u>2.c</u>	25	31 - 32 ^d	
Cyclohexylamine	1:2	<u>2 d</u>	30	148-149 ^C	149-149.5 ⁴ , 156 ⁵
Aniline	1:2	3	10	154-155 ^e	154-155 ⁶
4-Phenylsemicar-	1:1	4	32	200-201 ^C	
o-Phenylenediamine	1:1	<u>5a</u>	41	> 300 ^e	$> 300^{9,10}$
	1:1	§.f	17	> 300 ^g	> 300 ¹¹
4-Methyl-e-phenyle-	1:1	5 <u>b</u>	22	>300 ^e	
nediamine <u>o</u> -Aminophenol	1:1	Za	42	179-180 ^g	
2-Amino-4-nitro- phenol	1:1	7.b.	68	> 3 0 0 ^h	

^aMolar ratio of 1 to amine.^bUncorrected. ^CFrom ethanol. ^dFrom ethanol/water. ^ePurified by dissolving in hot K_2CO_3 solution and precipiting with conc. HCl. ^fIn refluxing ethanol. ^gFrom acetone. ^hFrom acetonitrile.

The addition of the liberated hydrogen sulphide to the cyano group followed by a transamination reaction would afford compounds 2. Several data about the addition of hydrogen sulphide to activated cyano groups⁷ and transamination reactions of thioamides^{4,8} support the proposed mechanism.

Scheme 1

Since the condensation products $\underline{5a}$ and $\underline{5b}$ could not be conveniently purified by standard procedures, the structure of $\underline{5a}$ was determined by its alkylation. Treatment of $\underline{5a}$ with ethyl bromide in alkali gave an analytical sample which had a ¹H nmr spectrum corresponding to a 2:1 mixture of its S- and N-ethyl derivatives $\underline{8}$ and $\underline{9}$. ¹² Compound $\underline{5b}$, with Ir absorption pattern similar to that of $\underline{5a}$, is expected to be a mixture of 6- and 7-methyl-3-amino-2(1H)quinoxalinothione: The isolation of compounds $\underline{5}$ or $\underline{6}$ originated from 1 and $\underline{0}$ -phenylenediamines, shows the possibility of 1 to form five or six membered rings as in the case of oxalic acid derivatives. Compound $\underline{5a}$ was previously obtained by more complex procedures.^{9,10}

Analytical and spectroscopic data of compounds 7 a and 7 b were in agreement with the proposed structures.

REFERENCES AND NOTES

- 1. D.M. Vyas and G.W. Hay, <u>J. Chem. Soc.</u> Perkin I, 1975, 180.
- 2. D.M. Vyas and G.W. Hay, Can. J. Chem., 1971, 49, 3755.
- 3. H.E. Simmons, D.C. Blomstrom and R.D. Vest, J. Am. Chem. Soc., 1962, 84, 4756.
- R.N. Hurd, G. de la Mater, G.C. McElheny, R.J. Turner and V.H. Wallingford, J. Org. Chem., 1961, 26, 3980.
- 5. R. Zielke and H. Magerlein, Synthesis, 1975, 47.
- 6. C. Larsen, K. Steliou and D.N. Harpp, J. Org. Chem., 1978, 43, 337.
- 7. G. Levesque, J.C. Gressier and M. Proust, Synthesis, 1981, 963.
- 8. O. Wallach, Liebigs Ann. Chem., 1891, 262, 357.
- 9. C.C. Morrison and A. Furst, J. Org. Chem., 1956, 21, 470.
- 10. Ger. Pat. 1,117,586, Chem. Abstr., 1962, 57, 4684.
- 11. E.S. Lane, J. Chem. Soc., 1953, 2238.
- ¹H nmr (DCCl₃) of compounds § and 9 (8): 7.9-7.2 (m, 4H); 5.6 (s, 2H);
 4.5 and 3.35 (2q, 2H) and 1.45 (t, 3H).

Received, 7th November, 1984