LACTONIC AMINES FROM GARNIERIA SPATHULAEFOLIA

Mauri Lounasmaa, ** Arto Tolvanen, * Lassi Hiltunen, * Jacques Pusset, ‡ and Gérard Chauvière‡

*Technical University of Helsinki, Department of Chemistry, SF-02150 Espoo 15, Finland; [‡] Laboratoire des Plantes Médicinales, Parc Forestier, Montravel, B.P. 643, Nouméa, New Caledonia

 $\frac{Abstract}{Abstract} - An investigation of \underline{Garnieria} \underline{spathulaefolia} \ led \ to \\ \underline{the isolation} \ and \underline{characterization} \ of \ two \underline{nitrogen-containing} \\ \alpha-methylene-\gamma-butyrolactone derivatives.$

INTRODUCTION

The genus <u>Garnieria</u> (Proteaceae) consists of the single species <u>G. spathulaefolia</u> Brongn. et Gris, which is endemic to New Caledonia. 1,2 We have investigated the leaves of the plant and isolated two lactonic amines $\underline{1}$ and $\underline{2}$, which are described in the present paper.

RESULTS AND DISCUSSION

The main compound $\underline{1}$ was isolated as white crystals. Its structure was deduced from IR, NMR and MS data.

In the EI mass spectrum of $\underline{1}$ the M⁺ peak at $\underline{m}/\underline{z}$ 311 was hardly detectable but the CI spectrum showed the (M+1)⁺ peak at $\underline{m}/\underline{z}$ 312 indicating the molecular formula $C_{15}H_{21}NO_6$. The most prominent peaks in the EI spectrum were at $\underline{m}/\underline{z}$ 226 and 128 due to α -cleavage and even-electron ion rearrangement, respectively (Fig. 1):

Figure 1.
$$\frac{1}{2}$$

CH₂

CH₂

HN

HN

m/z 226

m/z 128

The IR spectrum of $\underline{1}$ showed a strong broad band at 1750 cm⁻¹ suggesting the presence of at least one γ -lactone ring. In the 1 H NMR spectrum the only distinct signal was a six proton multiplet centred at δ 4.27 due to three -CH $_2$ -O- groups. The rest of the spectrum (δ 3.5-1.5) was not interpreted with certainty because of overlapping of signals.

The ^{13}C NMR spectrum was indicative of a highly symmetric molecule: only five signals were detected and all were in good agreement with the proposed structure $\underline{1}$ (Fig. 2). The signals at δ 54.5 and 38.3 are slightly broadened.

Figure 2.

Along with the tertiary amine $\underline{1}$ a small amount of the secondary amine $\underline{2}$ was isolated.

As in compound $\underline{1}$, the molecular peak $(\underline{m}/\underline{z}\ 213\ 210^{\rm H}_{15}{\rm NO}_4)$ in the EI mass spectrum of compound $\underline{2}$ was hardly detectable and was confirmed by the CI mass spectrum $(\underline{m}/\underline{z}\ 214\ ,(M+1)^+)$. The IR spectrum (3340, 1630 cm⁻¹, secondary amine; 1750 cm⁻¹, γ -lactone) and the $^{1}{\rm H}$ NMR spectrum (δ 4.29, 4H, m) of $\underline{2}$ resembled those of $\underline{1}$. The difference in the chemical shifts ($^{13}{\rm C}$ NMR spectra, Fig. 2) of the carbon atoms adjacent to nitrogen in compounds $\underline{2}$ (secondary amine) and $\underline{1}$ (tertiary amine) are in good agreement, as could be expected.

A few years ago Bick $\underline{\text{et al.}}^3$ isolated from another proteaceous plant $\underline{\text{Bellendena}}$ montana R.Br. a lactonic compound called B2, the structure of which was not elucidated. The reported data strongly suggest that our compound $\underline{\text{1}}$ is identical with that compound.

Both $\underline{1}$ and $\underline{2}$ are artefacts formed in the course of the extraction procedure in a reaction between ammonia and a suitable lactonic precursor in the plant (cf. α -methylene- γ -butyrolactones, $\underline{e}.\underline{g}$. tulipalin $A^{4,5}$). When the extraction procedure was executed using aqueous sodium bicarbonate solution instead of ammonia, no traces of 1 or 2 were detected.

EXPERIMENTAL

<u>Plant material collection and identification</u>. The plant material used (voucher sample; Pusset 219) was collected in January 1981 on Mont Kaala (at alt. 550 m) in northern New Caledonia.

Isolation of products. Dried powdered leaves (5.2 kg) were moistened with 20% NH $_4$ OH and then exhaustively percolated with CH $_2$ Cl $_2$. After normal work-up a mixture of crude basic compounds was obtained. Column chromatography (silica gel, CH $_2$ Cl $_2$ /MeOH/EtOAc, 97.5:1.5:1) followed by preparative TLC (alumina, CH $_2$ Cl $_2$ /MeOH, 90:10) permitted the isolation of two products $\underline{1}$ (290 mg) and $\underline{2}$ (10 mg).

Compound 1. mp. $184-6^{\circ}$ C (MeOH) (dec.), IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹; 2950, 2850, 1750 (C=0), 1460, 1380; ¹H NMR (60 MHz, CDCl₃) and ¹³C NMR (15.04 MHz, CDCl₃): see text. EIMS (probe) 70 eV, $\underline{\text{m/z}}$ (rel.int.): 311 M⁺ (<1), 226 (65), 212 (5), 128 (100). CIMS (isobutane, probe), $\underline{\text{m/z}}$ (rel.int.): 312 (M+1)⁺ (100), 226 (25), 214 (90), 128 (25), 116 (65).

Compound 2. colourless oil (partly crystallized on standing). IR ν_{max} cm⁻¹: 3340 (NH), 2930, 1750 (C=0), 1630, 1460, 1380; ¹H NMR (60 MHz, CDCl₃) and ¹³C NMR (15.04 MHz, CDCl₃): see text. EIMS (probe) 70 eV, $\underline{m}/\underline{z}$ (rel.int.): 213 (M⁺) (<1), 128 (100). CIMS (<u>iso</u>butane, probe), $\underline{m}/\underline{z}$ (rel.int.): 214 (M+1)⁺ (100), 117 (20), 99 (10).

REFERENCES

- A. Lemée, <u>Dictionnaire Descriptif et Synonymique des Genres de Plantes Phané-rogames</u>, Tome III, Imprimerie Commerciale et Administrative, Brest, 1931, pp. 199-200.
- A. Guillaumin, Flore Analytique et Synoptique de la Nouvelle Calédonie, Phanérogames, Office de la Recherche Scientifique Coloniale, Paris, 1948, p. 101.
- 3. I.R.C. Bick, J.W. Gillard and H.-M. Leow, Aust. J. Chem. 1979, 32, 1827.
- 4. U.W. Brongersma-Oosterhoff, Recl. Trav. Chim. Pays-Bas, 1967, 86, 705.
- 5. B.H.H. Bergman, J.C.M. Beijersbergen, J.C. Overeem and A. Kaars Sijpesteijn, Recl. Trav. Chim. Pays-Bas, 1967, 86, 709.

Received, 24th December, 1984