ACID-CATALYZED CYCLIZATION OF 2-HYDROXY-3-PYRROLONE DERIVATIVES.

2-METHOXY-3(2H)-FURANONES AS PRECURSORS OF POLYCYCLIC NITROGEN HETEROCYCLES

Jeremiah P. Freeman* and Mary Kay Fettes-Fields

Department of Chemistry, University of Notre Dame,

Notre Dame, Indiana 46556, U.S.A.

Abstract - Condensation of 2-methoxy-3(2H)-furanones with β -substituted ethylamines followed by treatment with various acid catalysts gives rise to polycyclic nitrogen heterocycles by way of two intramolecular cyclizations. The pathway depends upon the nature of the β -substituent. β -Aryl substituents underwent alkylation through the 2-position of the hetero ring while β -amino- and β -thio groups cyclized to the 5-position.

Weigele and co-workers reported some years ago that primary amines reacted with 2-methoxy-3- (2H)-furanones to produce 2-hydroxy-3(2H)-pyrrolone derivatives. In view of recent interest in nitrogen heterocycle synthesis by generation of an electrophilic center next to a nitrogen atom from aminal-like precursors, it seemed to us that appropriately N-substituted 2-hydroxy (or 2-alkoxy) 3-(2H)-pyrrolones might be enticed to undergo intramolecular cyclization in the presence of acid catalysts. Thus a series of N-(β -arylethyl) derivatives of 2,4-diphenyl-2-hydroxypyrrolone were prepared and so treated in refluxing solvent. It was observed that the highest yields of cyclization products were obtained when the aryl group was electron-rich and particularly when an electron-releasing meta substituent (para to the position undergoing alkylation) was present. The results are summarized in Scheme I and Table I.

Scheme I

Ph
$$\xrightarrow{Ph}$$
 $\xrightarrow{CH_2CH_2NH_2}$ \xrightarrow{Ph} $\xrightarrow{CH_2CH_2}$ $\xrightarrow{R^3}$ $\xrightarrow{R^3}$ \xrightarrow{Ph} \xrightarrow{Ph}

Table I³

(No. of

Pyrrolone 1	Catalyst	(equiv.)	<u>Solvent</u>	Pyrroloquinoline	Mp, °C	Yield, %
$R^{1}=R^{2}=R^{3}=H$	С7Н7803Н	(1.20)	С ₆ Н ₆	2, R ¹ =R ² =R ³ =H	175-177	17
$R^1 = R^3 = H$, $R^2 = 0CH_3$	A1C13	(1.40)	CH ₂ C1 ₂	2, $R^{1}=R^{3}=H$, $R^{2}=OCH_{3}$	169-170	33
$R^{1}=R^{2}=H$, $R^{3}=0CH_{3}$	HC02H	(-)	HCO2Ha	2a, R ² =H, R ³ =OCH ₃	225-227	86
$R^{1}=H$, $R^{2}=R^{3}=OCH_{3}$	С7Н7S03Н	(0.35)	C ₆ H ₆	2a, R ² =R ³ =OCH ₃	216-217	99
$R^{2}=H$, $R^{1}=R^{3}=0CH_{3}$	C7H7SO3H	(0.62)	C6H6	2, R ² =H, R ¹ =R ³ =OCH ₃	216-218	26
a_				3		

aReaction temperature was 25°C.

When tryptamine was used to prepare the pyrrolone, acid treatment resulted in cyclization in the α -position of the indole ring to produce a β -carboline derivative in 86% yield:

When the aromatic ring was connected to the side chain through a nitrogen atom, a most interesting result was obtained. Ring alkylation to give a benzodiazepine derivative 3 was still observed, but, depending upon the catalyst, this product was accompanied by various amounts of an isomer that proved to be compound 4:

A product of similar structure was obtained exclusively when N-methylethylenediamine was used. Finally, this kind of cyclized product (5) was obtained directly from the reaction of the 2-methoxy-3(2H)-furanone with β -mercaptoethylamine.

It is particularly striking that none of the 2-alkylation product of isomeric structure & was obtained from any of these reactions. The route to compounds of type 4 and 5 may be envisioned as follows:

The structural differentation of compounds of type \S and 5 from 6 is based upon the disappearance from their nmr spectra of the sharp singlet at δ 7.7-8.4 common to all compounds in this pyrrolone series with a proton at C5, and the appearance of a sharp singlet at δ 4.4-4.6, which is compatible with the deshielded environment at C2.

Studies are underway to examine the scope of these reactions, particularly the effect of substituents in the pyrrolone on the 5,5-cyclization.

REFERENCES

- 1. M. Weigele, J. P. Tengi, S. DeBernardo, R. Czajkowski, and W. Leimgruber, <u>J. Org. Chem.</u>, 1976. 41, 388 and preceding papers.
- H. Kohn and Z.-K. Liao, <u>J. Org. Chem.</u>, 1982, 47, 2787; B. E. Maryanoff, D. F. McCornsey, and B. A. Dukl-Ensweiler, <u>J. Org. Chem.</u>, 1983, 48, 5062; S. Kano, Y. Yuasa, T. Yokomatsu, and S. Shibiya, <u>J. Org. Chem.</u>, 1983, 48, 3835; G. A. Kraus and S. Yue, <u>J. Org. Chem.</u>, 1983, 48, 2936.
- 3. Satisfactory analyses were obtained for all new compounds.

Received, 24th December, 1984