NITROGEN BRIDGEHEAD COMPOUNDS. PART 54¹. NEW ROUTE FOR THE PREPARATION OF 2,3a,6a-TRIAZAPHENALENE SKELETON István Bitter^{al}, Béla Pete^{al}, Gábor Tóth^{a2}, István Hermecz^b, and

- al: Technical University, Department of Organic Chemistry and Technology, H-Illl Budapest, Hungary
- a2: NMR Laboratory of the Institute of General and Analytical Chemistry, H-1111 Budapest, Hungary
- b: CHINOIN Pharmaceutical and Chemical Works, H-1325 Budapest, Hungary

<u>Abstract</u> - A new approach for the synthesis of 2,3a,6a-triaza-phenalene skeleton has been developed by the reaction of $\underline{9}$ with aldehydes.

In our previous papers 1,2 we have reported the preparation of 2,3a,6a-triazaphenalenium quaternary salts and some representatives of the neutral species. These routes are not suitable for the syntheses of derivatives unsubstituted in position 3. Therefore we have developed a new method which can be widely used in the preparation of the title compounds. Compounds $\underline{1}^{3,4}$ smoothly react with ammonia and amines at room temperature affording compounds 2-7 and $\underline{8}$ - 10^5 .

As shown by the 1 H NMR spectra compounds 2-7 are present as Z-E equilibrium mixtures. Assignment was made on the basis of the 6-methyl signals, which in one of the isomers exhibited an anomalous diamagnetic shift. Considering that the rotation of the exocyclic amidine group is strongly hindered, the N-phenyl group of

the $\underline{\mathcal{E}}$ isomer gets near the 6-methyl group, and can exert a shielding effect.

in CDCl_z

Com- pound		<u>E</u> Isome	r		<u>Z</u> Isomer					
	6-Me	H-2	NH	6-Me	H-2	NH	Ratio			
<u>2</u> a	0.67d	8.08d <u>J</u> =4Hz	11.50d 10.58s	1.13d	8.12d <u>J</u> =4Hz	11.45 d 10.60 s	50:50			
<u>3</u> a	0.64d	8.08d <u>J</u> =6Hz	11.56d 10.49s	1.09d	8.14d J=6Hz	11.50 d 10.60 s	45:55			
<u>4</u> a	0.65d	8.09d <u>J</u> ≖5.5Hz	11.56d 10.54s	1.09d	8.15d <u>J</u> =5.5Hz	11.50 d 10.60 s	45:55			
<u>5</u> a	0.74d	8.07d <u>J</u> ≃5.5Hz	11.56d 10.60s	1.12d	8.14d <u>J</u> ≖5.5Hz	11.50 d 10.68 s	45:55			
<u>6</u> a	-	-	-	1.08d	8.05s	12.20br 11.00br	0:100			
<u>7</u> a	0.82d	8.21d <u>J</u> =6Hz	12.55d 10.32s	1.17d	8.28d <u>J</u> =6Hz	13.00 d 10.57 s	40:60			

Compounds $\underline{8}a-\underline{10}a$ may exhibit tautomerism between forms \underline{A} , \underline{B} , and \underline{C} . According to their 1 H NMR and 13 C NMR spectra, compounds $\underline{9}\mathrm{b}$ and $\underline{9}\mathrm{c}$ really shows this equilibria but in 9b, B isomer (86%) predominates to such a great extent that we have failed in the correct assignment of isomers \underline{A} (5%) and \underline{C} (9%).

1H NMR	shifts	of comp	ound <u>9</u> c		JE	OL-FX-	100	in CDC	L ₃		(TMS)
Isomer	6-Ne	H-2	H-3	н	-6 H	1 ₂ -7,H ₂	-8	н-9	NMe ₂	ИН	Ratio
A	1.40d	7.81d 3 <u>J</u> =7Hz	6.35 6 ₃	dd 5.0 =1Hz)2m]	.70-2.	65m	4.13m	3.00s	8.60br	18%
<u>B</u>	1.28d	7.6ld	5.78	d 5.6)2m]	.70-2.	65m	-	2.85s	8.60br	60%
<u>C</u>	1.46d	7 . 83d	6.386 6 _{23,9} =6	dd _{5.0} D.5Hz)2m]	L.70-2.	65m	4.10m	3.02s	8.60br	22%
¹³ C NMR	shifts	of comp	oound <u>9</u>	c	JE	OL-FX-	100	in CDC	13		(TMS)
Isomer	C-2	C-3	C-4	C - 6	C-7	C-8	C-9	C - 9a	6-Me	NCN	(CH ₃) ₂ N
<u>A</u>	152.2 [×]	113.1	162.6	47.8	24,1	20.0	43.9	158.8	3 19.3	164.3	38.5 [×]
<u>B</u>	151.0	103.0	162.6	45.3	26.7	20.3	79.0	158.9	17.7	165.0	40.5
<u>c</u>	152.4 [*]	112.9	162.6	47.9 ⁺	27.4	21.9	46 .3	158.8	3 19.0	164.3	38.7 ^X

*, +, and x interchangeable

Compound 9a readily cyclizes with aldehydes affording the triazaphenalene derivatives 11-14. Compound 9a (3 mmole) was reacted with 38% aqueous CH_2O (0.5 ml) in CH_2Cl_2 (15 ml) at ambient temperature for 12 h to give compound 11 in yield 70%. Compound 9a (5 mmole) was reacted with aldehyde (25 mmole) in ethanol (20 ml) at reflux temperature for 5-10 h to give tricyclic compounds 12-14 in yield 65-75%. The cyclization proceeds highly stereoselectively, as 1H and ^{13}C NMR spectra show in all cases the formation of single stereoisomer. We have recently described that in the thermodynamically more stable form the 2,3a,6a-triazaphenalenium salts contain the R^2 group in pseudo-axial position trans to the 7-Me group. Compounds 12-14 are very likely to be the same structure but NMR data do not offer enough evidence for the determination of the geometry of the C-3 atom.

$$9a \frac{R^{2}CHO}{8} = \frac{9}{8} + \frac{2}{7} + \frac{1}{10} + \frac{1}{10} = \frac{1}{10}$$

$$9a \frac{R^{2}CHO}{8} = \frac{9}{10} + \frac{1}{10} + \frac{1}{10} = \frac{1}{10}$$

$$11-14$$

$$R^2$$
 mp (°C)
 11 H 160 (EtOH)
 12^N i-Pr 186 (EtOH)
 13 Pr 96-98 (Et₂0)
 14^{NN} Ph 146 (EtOH)

м: picrate salt, мм: perchlorate salt

Characteristic	1H NMR	shifts	o f	compounds	<u>11-14</u> ;	JEOL-FX-100	in CDC1	(TMS)

			•			
Compound	(CH ₃) ₂ N	H-3	H-4	H-7	7-CH ₃	(C(8)H ₂ -C(9)H ₂
11	2.77s	4.90d ⁺ 5.05d ⁺	7.79s	5.06m	1.22d	1.6-2.6m
<u>12</u> *	3.24s	5.18d	8.03s	5.02m	1.28d	1.2-3.Om
13	2.76s	5.16t	7.81s	4.88m	1.21d	1.0-2.8m
<u>14</u> **	3.24\$	6.82d	8.80\$	4.90m	1.28d	1.7-3.Om

 $^{+\}frac{2}{3}$ = 13Hz, * picrate salt, ** perchlorate salt

Characteristic 13 C NMR shifts of compounds $\underline{11}$ - $\underline{14}$; JEOL-FX-100 in CDCl $_3$ (TMS)												
Compound	C-1	C-3	C-4	C-5	C6	C-7	C-8	C-9	C-9a	C-9b	(CH ₃) ₂ N	CH ₃
11	141.8	68.2	147.7	101.0	163.7	45.3	25.8	18.8	86 .8	156.3	40.4	15.2
<u>12</u> *	146.7	74.6	148.0	104.5	157.4	46.9	25.8	19.3	82.1	154.9	41.6	15.5
<u>13</u>	138.5	68.7	148.0	100.0	160.4	45,2	25,6	18.7	85.4	156.3	40.0	15.7
<u>14</u> **	146.0	67.7	148.6	104.4	156.8	46 .8	25.3	18.8	83.3	154.4	41.7	15.3

m picrate salt, mm perchlorate salt

These new 2,3a,6a-triazaphenalene derivatives can be quaternized on the N-2 atom furnishing the same triazaphenelenium salts prepared by direct cyclization.

Therefore this route is regarded as a structure proving synthesis of the 2,3a,6a-triazaphenalenium derivatives we have recently described. 2

REFERENCES AND NOTES

- Part 53, I. Bitter, B. Pete, G. Tóth, I. Hermecz, and Z. Mészáros, <u>Hetero-cycles</u>, in the press.
- 2. I. Bitter, B. Pete, I. Hermecz, G. Tóth, K. Simon, M. Czugler, and Z. Mészáros, <u>Tetrahedron Letters</u>, 1982, 23, 2891.
- 3. I. Hermecz, I. Bitter, Á. Horváth, G. Tóth, and Z. Mészáros, <u>Tetrahedron</u>
 <u>Letters</u>, 1979, 255.
- 4. G. Tóth, C. De la Cruz, I. Bitter, I. Hermecz, B. Pete, and Z. Mészáros, Org. Magn. Reson., 1982, 20, 229.
- 5. A solution of compound $\underline{1}$ (10 mmol) and aromatic amine (20 mmol) in $\mathrm{CH_2Cl_2}$ (20 ml) was refluxed for 3 h. The precipitated amine hydrochloride was filtered off and the filtrate was evaporated to dryness in vacuo. The residue was recrystallized from ethanol. Yield 80-90%. The bases can be liberated with aqueous $\mathrm{Na_2CO_3}$ solution. Compounds $\underline{9-10}$ can be prepared with excess of gaseous ammonia or methylamine in similar manner. Yield 80-85%.

Received, 28th January, 1985