A NEW SYNTHETIC METHOD FOR PROLINE DERIVATIVES <u>VIA</u> THE AZOMETHINE YLIDE INTERMEDIATE GENERATED FROM METHYL N-(TRIMETHYLSILYLMETHYL) IMINOACETATE

Nobuyuki Imai, Yoshiyasu Terao, and Kazuo Achiwa[°] Shizuoka College of Pharmacy, 2-2-1 Oshika, Shizuoka 422, Japan

<u>Abstract</u> — Proline derivatives were found to be synthesized by the 1,3-dipolar cycloaddition of the azomethine ylide, produced from methyl N-(trimethylsilylmethyl)iminoacetate and benzyl bromide or a catalytic amount of trifluoroacetic acid, to conjugated olefins.

The base-promoted 1,3-dipolar cycloaddition of N-(phenylthiomethyl)amino acid methyl ester (1) to conjugated olefinic dipolarophiles has been shown to give the corresponding proline derivatives with low regioselectivity.¹ This fact may be due to the ambivalence of the 1,3-dipole termini and indicate 2a - 2b (or 2c) as the structures of the intermediary azomethine ylides in this 1,3-dipolar cyclo-We wish to describe here that a new 1,3-dipolar cycloaddition of methyl addition. N-(trimethylsilylmethyl)iminoacetate (3) and benzyl bromide as the synthon 2b gave almost the same regioselectivity of the products as the base-promoted 1,3-dipolar This result indicates that both of the 1,3cycloaddition of 1 as the synthon 2a. dipolar cycloadditions proceed via the common ambivalent azomethine ylide intermediates (2a - - 2b or 2c) as indicated in Scheme 1. PhSCH₂NCHCO₂CH₃ $PhSCH_2 NCH_2 CO_2 CH_3$ $\stackrel{1}{\sim}$ -Me₃SiBr RBr H_2C CHCO2CH3 - Me₃SiCH₂N=CHCO₂CH₃ Me₃SiCH₂N=CHCO₂CH₃-R= PhCH₂ 2b CH 302 C PhCH=C CO2CH3 CO2CH3 : R= PhCH₂, R'= CO_2CH_3 : R= CH₃, R'= CO_2CH_3 : R= CH₃, R'= H **b**: $R = PhCH_2$, $R' = CO_2CH_3$ 5b: R= CH₃, R'= CO₂CH₃ 7b: R= CH₃, R'= H Scheme 1

Together with such mechanistic interests, it was noticeable that this reaction provided a new method for the synthesis of proline derivatives by 1,3-dipolar cycloaddition involving silicon-carbon bond cleavage.² Further investigations revealed that the reaction proceeded also in the presence of a catalytic amount of trifluoroacetic acid^{2b} instead of benzyl bromide to give N-unsubstituted proline derivatives, which were purified after N-acylation because of their instability.

$$Me_{3}SiCH_{2}N=CHCO_{2}CH_{3}$$

$$\begin{array}{c} 1) > C=C \langle , CF_{3}CO_{2}H(cat.) \\ 2) RCOC1 in pyridine \\ COR \\ COR$$

A typical experiment using 3, dimethyl benzylidenemalonate, and trifluoroacetic acid is shown below. To a stirred suspension of methyl α -hydroxy- α -methoxyacetate (12 nmol) and MgSO4 in dried ether (10 ml) trimethylsilylmethylamine (13.2 mmol) was added dropwise on ice-cooling. The mixture was stirred at r.t. for 30 min and filtered off. The filtrate was added dropwise to an ice-cooling solution of dimethyl benzylidenemalonate (2 mmol) and trifluoroacetic acid (0.2 mmol) in hexamethylphosphoramide (HMPA) (20 ml) with stirring. The whole was stirred for 1.5 h at the temperature under nitrogen atmosphere. The reaction mixture was diluted with benzene and washed with sat. aq. NaCl-10% aq. KHCO3 and sat. aq. NaCl, and dried over MgSO4. After removal of benzene, acetyl chloride (13.2 mmol) was added dropwise to a solution of the resulted residue in pyridine (5 ml) on ice-The mixture was stirred for 1.5 h under nitrogen atmosphere and diluted cooling. with dichloromethane. The solution was washed with 15% aq. HCl, sat. aq. NaCl-10% KHCO3, and sat. aq. NaCl, and then dried over MgSO4. After removal of dichloromethane, the residual oil was submitted to silica gel chromatography using nexane-ethyl acetate (1 : 3) as an eluent. Trimethyl N-acetyl-3-phenyl-2,4,4pyrrolidinetricarboxylate (6a) and trimethyl N-acetyl-4-phenyl-2,3,3-pyrrolidinetricarboxylate (6b) were obtained.³ Results of extensive experiments with the other dipolarophiles are collected in Table 1. Table 1 clearly indicates that the present reaction is superior to the base-promoted one in regard to the product stereoselection, because no epimerization of the products is observed (entries 5 and 9).

Its further application to the synthesis of natural proline derivatives is under investigation.

.

Entry	Substrate	Dipolarophile Reagents	Product	Total yield (%)
lc	3~	PhCH=C (CO ₂ CH ₃) ₂ PhCH ₂ Br	CH ₂ Ph CH ₂ Ph	
2 ^d	$\stackrel{1}{\sim}$	PhCH=C(CO ₂ CH ₃) ₂ NaH	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	H ₃ ₂ CH ₃ 71 ₂ CH ₃
3	3~	PhCH=C $(CO_2CH_3)_2$ CF ₃ CO ₂ H, CH ₃ COC1	CH ₃ O ₂ C CH ₃ O ₂ C CH ₃ O ₂ C CH ₃ CO ₂ CH ₃ COCH ₃ COCH ₃	H ₃ 2CH ₃ 62 2CH ₃
4 ^d	1~	PhCH=CHCO ₂ CH ₃ NaH	ĊH ₃ ĊH ₃	H ₃ 84 ₂ CH ₃
5	3	PhCH=CHCO ₂ CH ₃ CF ₃ CO ₂ H, CH ₃ COCl	$\begin{array}{c} 7a(\text{trans: } 0.2) \\ 7a'(\text{cis: } 1.4) \\ CH_3O_2C_{\overline{\underline{s}}} \\ & &$	2H ₃ 49 9 ₂ CH ₃
6 ^e	1	CH ₃ O ₂ CCH=CHCO ₂ CH (trans) NaH	CH ₃ O ₂ C ₂ CO ₂ CH ₃	70 /1) ^f
7	3~	$CH_3O_2CCH=CHCO_2CH$ (trans) CF_3CO_2H , CH_3COCL	³ CH ₃ O ₂ C _{$=$} CO ₂ CH ₃ V_N CO ₂ CH ₃	49 .8/l) ^f
8 ^e	1 ~	CH ₃ O ₂ CCH=CHCO ₂ CH (cis) NaH	$CH_3O_2C_{\Xi}$ CO_2CH_3	16
9	3~	CH ₃ O ₂ CCH=CHCO ₂ CH (cis) CF ₃ CO ₂ H, CH ₃ COC1	CH_3O_2C CO_2CH_3 CO_2CH_3 CO_2CH_3	27 .6/1) ^f

	a (1), at a	- -	Drolino	Derivatives ^a
Table l.	Synthesis	OI	Proline	Derivatives

a. All reactions were carried out as described in the text unless otherwise noted.

- b. Ratio of the isomers is described in parentheses.
- c. Reaction conditions: molar ratio, 3/PhCH₂Br/PhCH=C(CO₂CH₃)₂= 6/1.1/1; solvent, HMPA; temp, 0 °C; time, 1.5 h.
- d. See the reference 1.
- e. This run shows the result obtained by the base-promoted cycloaddition in the similar manner as described in the previous paper (ref. 1).
- f. Ratio of the stereoisomers at the 2-position was estimated on the basis of the NMR spectrum.

REFERENCES AND NOTES

- 1. N. Imai, Y. Terao, K. Achiwa, and M. Sekiya, Tetrahedron Lett., 1984, 25, 1579.
- 2. a. E. Vedejs and G. R. Martinez, J. Am. Chem. Soc., 1979, 101, 6452; E. Vedejs and G. R. Martinez, ibid., 1980, 102, 7993; K. Achiwa and M. Sekiya, Chem. Lett., 1981, 1213; K. Achiwa and M. Sekiya, Tetrahedron Lett., 1982, 23, 2589; Y. Terao, N. Imai, K. Achiwa, and M. Sekiya, Chem. Pharm. Bull., 1982, 30, 3167; T. Livinghouse and R. Smith, J. Chem. Soc., Chem. Commun., 1983, 210; R. Smith and T. Livinghouse, J. Org. Chem., 1983, 48, 1554; K. Achiwa, T. Motoyama, and M. Sekiya, Chem. Pharm. Bull., 1983, 31, 3939; E. Vedejs and F. G. West, J. Org. Chem., 1983, 48, 4773; A. Padwa and Y. -Y. Chen, Tetrahedron Lett., 1983, 24, 3447; O. Tsuge, S. Kanemasa, S. Kuraoka, and S. Takenaka, Chem. Lett., 1984, 279; O. Tsuge, S. Kanemasa, A. Hatada, and K. Matsuda, ibid., 1984, 801; K. Achiwa, N. Imai, T. Inaoka, and M. Sekiya, Chem. Pharm. Bull., 1984, 32, 2878; A. Hosomi, Y. Sakata, and H. Sakurai, Chem. Lett., 1984, 1117; K. Achiwa, N. Imai, T. Motoyama, and M. Sekiya, *ibid.*, 1984, 2041; A. Padwa, G. Haffmanns, and M. Tomas, J. Org. Chem., 1984, 49, 3314; K. Achiwa, K. Sugiyama, and M. Sekiya, Chem. Pharm. Bull., in press; b. Y. Terao, H. Kotaki, N. Imai, and K. Achiwa, ibid., in press.
- 3. Satisfactory analytical and spectral data were obtained for these compounds.

Received, 1st February, 1985